60 research outputs found

    Tumor-specific HMG-CoA reductase expression in primary premenopausal breast cancer predicts response to tamoxifen

    Get PDF
    ABSTRACT: INTRODUCTION: We previously reported an association between tumor-specific 3-hydroxy-3-methylglutharyl-coenzyme A reductase (HMG-CoAR) expression and a good prognosis in breast cancer. Here, the predictive value of HMG-CoAR expression in relation to tamoxifen response was examined. METHODS: HMG-CoAR protein and RNA expression was analyzed in a cell line model of tamoxifen resistance using western blotting and PCR. HMG-CoAR mRNA expression was examined in 155 tamoxifen-treated breast tumors obtained from a previously published gene expression study (Cohort I). HMG-CoAR protein expression was examined in 422 stage II premenopausal breast cancer patients, who had previously participated in a randomized control trial comparing 2 years of tamoxifen with no systemic adjuvant treatment (Cohort II). Kaplan-Meier analysis and Cox proportional hazards modeling were used to estimate the risk of recurrence-free survival (RFS) and the effect of HMG-CoAR expression on tamoxifen response. RESULTS: HMG-CoAR protein and RNA expression were decreased in tamoxifen-resistant MCF7-LCC9 cells compared with their tamoxifen-sensitive parental cell line. HMG-CoAR mRNA expression was decreased in tumors that recurred following tamoxifen treatment (P < 0.001) and was an independent predictor of RFS in Cohort I (hazard ratio = 0.63, P = 0.009). In Cohort II, adjuvant tamoxifen increased RFS in HMG-CoAR-positive tumors (P = 0.008). Multivariate Cox regression analysis demonstrated that HMG-CoAR was an independent predictor of improved RFS in Cohort II (hazard ratio = 0.67, P = 0.010), and subset analysis revealed that this was maintained in estrogen receptor (ER)-positive patients (hazard ratio = 0.65, P = 0.029). Multivariate interaction analysis demonstrated a difference in tamoxifen efficacy relative to HMG-CoAR expression (P = 0.05). Analysis of tamoxifen response revealed that patients with ER-positive/HMG-CoAR tumors had a significant response to tamoxifen (P = 0.010) as well as patients with ER-positive or HMG-CoAR-positive tumors (P = 0.035). Stratification according to ER and HMG-CoAR status demonstrated that ER-positive/HMG-CoAR-positive tumors had an improved RFS compared with ER-positive/HMG-CoAR-negative tumors in the treatment arm (P = 0.033); this effect was lost in the control arm (P = 0.138), however, suggesting that HMG-CoAR predicts tamoxifen response. CONCLUSIONS: HMG-CoAR expression is a predictor of response to tamoxifen in both ER-positive and ER-negative disease. Premenopausal patients with tumors that express ER or HMG-CoAR respond to adjuvant tamoxifen

    N-substituted benzamides inhibit NFκB activation and induce apoptosis by separate mechanisms

    Get PDF
    Benzamides have been in clinical use for many years in treatment against various disorders. A recent application is that as a sensitizer for radio- or chemotherapies. We have here analysed the mechanism of action of N-substituted benzamides using an in vitro system. We found that while procainamide was biologically inert in our system, the addition of a chloride in the 3′ position of the benzamide ring created a compound (declopramide) that induced rapid apoptosis. Furthermore, declopramide also inhibited NFκB activation by inhibition of IκBβ breakdown. An acetylated variant of declopramide, N-acetyl declopramide, showed no effect with regard to rapid apoptosis induction but was a potent inhibitor of NFκB activation. In fact, the addition of an acetyl group to procainamide in the 4′ position was sufficient to convert this biologically inactive substance to a potent inhibitor of NFκB activation. These findings suggest two potential mechanisms, induction of early apoptosis and inhibition of NFκB mediated salvage from apoptosis, for the biological effect of N-substituted benzamides as radio- and chemo-sensitizers. In addition it suggests that N-substituted benzamides are potential candidates for the development of anti-inflammatory compounds using NFκB as a drug target. © 1999 Cancer Research Campaig

    APPROACH TO THE DISCOVERY OF NOVEL, SELECTIVE INHIBITORS OF P56(LCK) TYROSINE KINASE - IDENTIFICATION OF NON-HYDROXYLATED CHROMONES AS P56(LCK) INHIBITORS

    No full text
    The protein tyrosine kinase p56(lck), which is expressed predominantly in lymphocytes, plays a critical role in optimal T cell activation through the T cell antigen receptor. An approach is presented for the discovery of selective p56(lck) inhibitors, which are potential immunosuppressants. A non-radioactive assay for p56(lck) tyrosine kinase activity has been developed and adapted for high volume screening. This assay does not require purified enzyme. p56(lck) in the plasma membranes of a human T cell line is purified in situ by immobilization onto the wells of a microtiter plate using an antibody specific for p56(lck). Following the kinase reaction in the presence of test compound, autophosphorylated p56(lck) is detected with a biotinylated monoclonal antibody to phosphotyrosine. Using the approach described in this report, three simple chromones have been identified that inhibit p56(lck) autophosphorylation with low micromolar potencies and exhibit some selectivity fdr p56(lck) over the serine/threonine and other tyrosine kinases tested. These compounds constitute a novel group of p56(lck) tyrosine kinase inhibitors. (C) 1995 Wiley-Liss, Inc
    • …
    corecore