12 research outputs found
In vivo antitumor activity of Euphorbia lathyris ethanol extract in colon cancer models.
Euphorbia lathyris seeds have been used to treat various medical conditions. We previously reported that ethanolic extract from the defatted seed of Euphorbia lathyris (EE) (variety S3201) possesses a potent in vitro antitumor activity against colon cancer (CRC) cell lines. However, the effects of EE on CRC in vivo models and its possible preventive activity have not been elucidated. The aim of this study is to develop an in vivo study to corroborate its efficacy. For this purpose, two tumor induction models have been developed. In orthotopic xenograft model, it has been shown that EE reduces tumor size without hematological toxicity. The ethanolic extract induced an intense apoptosis in tumors mediated by caspase 3. Using the Azoxymethane/Dextran Sulfate Sodium model, a reduction of dysplastic polyps has been demonstrated, showing its preventive power. Furthermore, EE promoted the presence of an eubiotic microbiotal environment in the mucosa of the colon and induced an increase in antioxidant enzyme activity. This fact was accompanied by a modulation of cytokine expression that could be related to its protective mechanism. Therefore, although further experiments will be necessary to determine its applicability in the treatment of CRC, ES could be a new prevention strategy as well as treatment for this type of tumor, being a powerful candidate for future clinical trials
Colon cancer therapy with calcium phosphate nanoparticles loading bioactive compounds from Euphorbia lathyris: In vitro and in vivo assay.
Amorphous calcium phosphate nanoparticles (ACP NPs) exhibit excellent biocompatibility and biodegradability properties. ACP NPs were functionalized with two coumarin compounds (esculetin and euphorbetin) extracted from Euphorbia lathyris seeds (BC-ACP NPs) showing high loading capacity (0.03% and 0.34% (w/w) for esculetin and euphorbetin, respectively) and adsorption efficiency (2.6% and 33.5%, respectively). BC-ACP NPs, no toxic to human blood cells, showed a more selective cytotoxicity against colorectal cancer (CRC) cells (T-84 cells) (IC50, 71.42 µg/ml) compared to non-tumor (CCD18) cells (IC50, 420.77 µg/ml). Both, the inhibition of carbonic anhydrase and autophagic cell death appeared to be involved in their action mechanism. Interestingly, in vivo treatment with BC-ACPs NPs using two different models of CRC induction showed a significant reduction in tumor volume (62%) and a significant decrease in the number and size of polyps. A poor development of tumor vasculature and invasion of normal tissue were also observed. Moreover, treatment increased the bacterial population of Akkermansia by restoring antioxidant systems in the colonic mucosa of mice. These results show a promising pathway to design innovative and more efficient therapies against CRC based on biomimetic calcium phosphate NPs loaded with natural products
Redescription of Mactra bonariensis Philippi, 1893 and designation of a neotype
During an ongoing revision of the Paraná Formation fauna of Argentina, the taxonomic status of Mactra bonariensis Philippi, 1893, was reassessed. The morphological characters of M. bonariensis provided in the original description and illustration do not allow clear delimitation of the species. The absence of type material of this species, coupled with difficulties in resampling the type locality due to urbanization, necessitates designation of a neotype. No records of this taxon were found in palaeontological and malacological collections. However, material collected from the Paraná Formation at 'La Juanita' (Entre Ríos, Argentina) comes from beds equivalent to those exposed at the locality from which Philippi described the original material. As this species may be confused with Quaternary and extant species from the region, a redescription is provided and a neotype designated.Fil: Pérez, Leandro Martín. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Paleozoología Invertebrados; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Signorelli, Javier Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico; Argentin