10 research outputs found

    Three-dimensional spectral domain optical coherence tomography and light microscopy of an intravitreal parasite

    Get PDF
    BACKGROUND: Various imaging modalities play a role in diagnosing parasitic infections of the eye. We describe the spectral domain optical coherence tomography (SD-OCT) findings of an intravitreal parasite with subsequent evaluation by light microscopy. FINDINGS: This is a case report of a 37-year-old Ecuadorian man who presented with uveitic glaucoma and a new floater in his left eye for 1 week’s duration. Full ophthalmic examination revealed an intravitreal parasite. Color fundus photography, fluorescein angiography (FA), ocular ultrasonography (US), and SD-OCT were performed. The parasite was removed via 23-gauge pars plana vitrectomy and sent to pathology for evaluation. Color fundus photography and ocular ultrasonography demonstrated an elongated foreign body within the vitreous above the retina. FA demonstrated minimal vascular changes in the vicinity of the parasite. SD-OCT was utilized to visualize the parasite and to create a three-dimensional (3D) image. The parasite was determined to be most consistent with Gnathostoma spp. by morphologic analysis. CONCLUSIONS: This is the first reported case of SD-OCT of an intravitreal parasite with corresponding evaluation by pathology. SD-OCT allows non-invasive, high-resolution visualization and 3D reconstruction of parasitic anatomy which may help establish tomographic criteria for species identification. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12348-015-0064-x) contains supplementary material, which is available to authorized users

    Inhibition of Protein Aggregation: Supramolecular Assemblies of Arginine Hold the Key

    Get PDF
    BACKGROUND: Aggregation of unfolded proteins occurs mainly through the exposed hydrophobic surfaces. Any mechanism of inhibition of this aggregation should explain the prevention of these hydrophobic interactions. Though arginine is prevalently used as an aggregation suppressor, its mechanism of action is not clearly understood. We propose a mechanism based on the hydrophobic interactions of arginine. METHODOLOGY: We have analyzed arginine solution for its hydrotropic effect by pyrene solubility and the presence of hydrophobic environment by 1-anilino-8-naphthalene sulfonic acid fluorescence. Mass spectroscopic analyses show that arginine forms molecular clusters in the gas phase and the cluster composition is dependent on the solution conditions. Light scattering studies indicate that arginine exists as clusters in solution. In the presence of arginine, the reverse phase chromatographic elution profile of Alzheimer's amyloid beta 1-42 (Abeta(1-42)) peptide is modified. Changes in the hydrodynamic volume of Abeta(1-42) in the presence of arginine measured by size exclusion chromatography show that arginine binds to Abeta(1-42). Arginine increases the solubility of Abeta(1-42) peptide in aqueous medium. It decreases the aggregation of Abeta(1-42) as observed by atomic force microscopy. CONCLUSIONS: Based on our experimental results we propose that molecular clusters of arginine in aqueous solutions display a hydrophobic surface by the alignment of its three methylene groups. The hydrophobic surfaces present on the proteins interact with the hydrophobic surface presented by the arginine clusters. The masking of hydrophobic surface inhibits protein-protein aggregation. This mechanism is also responsible for the hydrotropic effect of arginine on various compounds. It is also explained why other amino acids fail to inhibit the protein aggregation

    Polymer interfaces on a molecular scale: Comparison of techniques and some examples

    No full text
    corecore