57 research outputs found
Conditional control of the quantum states of remote atomic memories for quantum networking
Quantum networks hold the promise for revolutionary advances in information
processing with quantum resources distributed over remote locations via
quantum-repeater architectures. Quantum networks are composed of nodes for
storing and processing quantum states, and of channels for transmitting states
between them. The scalability of such networks relies critically on the ability
to perform conditional operations on states stored in separated quantum
memories. Here we report the first implementation of such conditional control
of two atomic memories, located in distinct apparatuses, which results in a
28-fold increase of the probability of simultaneously obtaining a pair of
single photons, relative to the case without conditional control. As a first
application, we demonstrate a high degree of indistinguishability for remotely
generated single photons by the observation of destructive interference of
their wavepackets. Our results demonstrate experimentally a basic principle for
enabling scalable quantum networks, with applications as well to linear optics
quantum computation.Comment: 10 pages, 8 figures; Minor corrections. References updated. Published
at Nature Physics 2, Advanced Online Publication of 10/29 (2006
Measurement-Induced Entanglement for Excitation Stored in Remote Atomic Ensembles
A critical requirement for diverse applications in Quantum Information
Science is the capability to disseminate quantum resources over complex quantum
networks. For example, the coherent distribution of entangled quantum states
together with quantum memory to store these states can enable scalable
architectures for quantum computation, communication, and metrology. As a
significant step toward such possibilities, here we report observations of
entanglement between two atomic ensembles located in distinct apparatuses on
different tables. Quantum interference in the detection of a photon emitted by
one of the samples projects the otherwise independent ensembles into an
entangled state with one joint excitation stored remotely in 10^5 atoms at each
site. After a programmable delay, we confirm entanglement by mapping the state
of the atoms to optical fields and by measuring mutual coherences and photon
statistics for these fields. We thereby determine a quantitative lower bound
for the entanglement of the joint state of the ensembles. Our observations
provide a new capability for the distribution and storage of entangled quantum
states, including for scalable quantum communication networks .Comment: 13 pages, 4 figures Submitted for publication on August 31 200
Memory-built-in quantum teleportation with photonic and atomic qubits
The combination of quantum teleportation and quantum memory of photonic
qubits is essential for future implementations of large-scale quantum
communication and measurement-based quantum computation. Both steps have been
achieved separately in many proof-of-principle experiments, but the
demonstration of memory-built-in teleportation of photonic qubits remains an
experimental challenge. Here, we demonstrate teleportation between photonic
(flying) and atomic (stationary) qubits. In our experiment, an unknown
polarization state of a single photon is teleported over 7 m onto a remote
atomic qubit that also serves as a quantum memory. The teleported state can be
stored and successfully read out for up to 8 micro-second. Besides being of
fundamental interest, teleportation between photonic and atomic qubits with the
direct inclusion of a readable quantum memory represents a step towards an
efficient and scalable quantum network.Comment: 19 pages 3 figures 1 tabl
Random Numbers Certified by Bell's Theorem
Randomness is a fundamental feature in nature and a valuable resource for
applications ranging from cryptography and gambling to numerical simulation of
physical and biological systems. Random numbers, however, are difficult to
characterize mathematically, and their generation must rely on an unpredictable
physical process. Inaccuracies in the theoretical modelling of such processes
or failures of the devices, possibly due to adversarial attacks, limit the
reliability of random number generators in ways that are difficult to control
and detect. Here, inspired by earlier work on nonlocality based and device
independent quantum information processing, we show that the nonlocal
correlations of entangled quantum particles can be used to certify the presence
of genuine randomness. It is thereby possible to design of a new type of
cryptographically secure random number generator which does not require any
assumption on the internal working of the devices. This strong form of
randomness generation is impossible classically and possible in quantum systems
only if certified by a Bell inequality violation. We carry out a
proof-of-concept demonstration of this proposal in a system of two entangled
atoms separated by approximately 1 meter. The observed Bell inequality
violation, featuring near-perfect detection efficiency, guarantees that 42 new
random numbers are generated with 99% confidence. Our results lay the
groundwork for future device-independent quantum information experiments and
for addressing fundamental issues raised by the intrinsic randomness of quantum
theory.Comment: 10 pages, 3 figures, 16 page appendix. Version as close as possible
to the published version following the terms of the journa
Quantum Storage of Photonic Entanglement in a Crystal
Entanglement is the fundamental characteristic of quantum physics. Large
experimental efforts are devoted to harness entanglement between various
physical systems. In particular, entanglement between light and material
systems is interesting due to their prospective roles as "flying" and
stationary qubits in future quantum information technologies, such as quantum
repeaters and quantum networks. Here we report the first demonstration of
entanglement between a photon at telecommunication wavelength and a single
collective atomic excitation stored in a crystal. One photon from an
energy-time entangled pair is mapped onto a crystal and then released into a
well-defined spatial mode after a predetermined storage time. The other photon
is at telecommunication wavelength and is sent directly through a 50 m fiber
link to an analyzer. Successful transfer of entanglement to the crystal and
back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality by almost three standard deviations (S=2.64+/-0.23). These results
represent an important step towards quantum communication technologies based on
solid-state devices. In particular, our resources pave the way for building
efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref.
[36
Observation of coherent many-body Rabi oscillations
A two-level quantum system coherently driven by a resonant electromagnetic
field oscillates sinusoidally between the two levels at frequency
which is proportional to the field amplitude [1]. This phenomenon, known as the
Rabi oscillation, has been at the heart of atomic, molecular and optical
physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi
oscillations in isolated single atoms or dilute gases form the basis for
metrological applications such as atomic clocks and precision measurements of
physical constants [3]. Both inhomogeneous distribution of coupling strength to
the field and interactions between individual atoms reduce the visibility of
the oscillation and may even suppress it completely. A remarkable
transformation takes place in the limit where only a single excitation can be
present in the sample due to either initial conditions or atomic interactions:
there arises a collective, many-body Rabi oscillation at a frequency
involving all N >> 1 atoms in the sample [4]. This is true even
for inhomogeneous atom-field coupling distributions, where single-atom Rabi
oscillations may be invisible. When one of the two levels is a strongly
interacting Rydberg level, many-body Rabi oscillations emerge as a consequence
of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to
quantum information processing based on this effect [5]. Here we report initial
observations of coherent many-body Rabi oscillations between the ground level
and a Rydberg level using several hundred cold rubidium atoms. The strongly
pronounced oscillations indicate a nearly complete excitation blockade of the
entire mesoscopic ensemble by a single excited atom. The results pave the way
towards quantum computation and simulation using ensembles of atoms
Mapping photonic entanglement into and out of a quantum memory
Recent developments of quantum information science critically rely on
entanglement, an intriguing aspect of quantum mechanics where parts of a
composite system can exhibit correlations stronger than any classical
counterpart. In particular, scalable quantum networks require capabilities to
create, store, and distribute entanglement among distant matter nodes via
photonic channels. Atomic ensembles can play the role of such nodes. So far, in
the photon counting regime, heralded entanglement between atomic ensembles has
been successfully demonstrated via probabilistic protocols. However, an
inherent drawback of this approach is the compromise between the amount of
entanglement and its preparation probability, leading intrinsically to low
count rate for high entanglement. Here we report a protocol where entanglement
between two atomic ensembles is created by coherent mapping of an entangled
state of light. By splitting a single-photon and subsequent state transfer, we
separate the generation of entanglement and its storage. After a programmable
delay, the stored entanglement is mapped back into photonic modes with overall
efficiency of 17 %. Improvements of single-photon sources together with our
protocol will enable "on demand" entanglement of atomic ensembles, a powerful
resource for quantum networking.Comment: 7 pages, and 3 figure
Realistic loophole-free Bell test with atom-photon entanglement
The establishment of nonlocal correlations, obtained through the violation of
a Bell inequality, is not only important from a fundamental point of view, but
constitutes the basis for device-independent quantum information technologies.
Although several nonlocality tests have been performed so far, all of them
suffered from either the locality or the detection loopholes. Recent studies
have suggested that the use of atom-photon entanglement can lead to Bell
inequality violations with moderate transmission and detection efficiencies. In
this paper we propose an experimental setup realizing a simple atom-photon
entangled state that, under realistic experimental parameters available to
date, achieves a significant violation of the Clauser-Horn-Shimony-Holt
inequality. Most importantly, the violation remains when considering typical
detection efficiencies and losses due to required propagation distances.Comment: 21 pages, 5 figures, 3 table, to appear in Nature Com
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
Experimental delayed-choice entanglement swapping
Motivated by the question, which kind of physical interactions and processes
are needed for the production of quantum entanglement, Peres has put forward
the radical idea of delayed-choice entanglement swapping. There, entanglement
can be "produced a posteriori, after the entangled particles have been measured
and may no longer exist". In this work we report the first realization of
Peres' gedanken experiment. Using four photons, we can actively delay the
choice of measurement-implemented via a high-speed tunable bipartite state
analyzer and a quantum random number generator-on two of the photons into the
time-like future of the registration of the other two photons. This effectively
projects the two already registered photons onto one definite of two mutually
exclusive quantum states in which either the photons are entangled (quantum
correlations) or separable (classical correlations). This can also be viewed as
"quantum steering into the past"
- …
