16 research outputs found

    Bell Correlations and the Common Future

    Full text link
    Reichenbach's principle states that in a causal structure, correlations of classical information can stem from a common cause in the common past or a direct influence from one of the events in correlation to the other. The difficulty of explaining Bell correlations through a mechanism in that spirit can be read as questioning either the principle or even its basis: causality. In the former case, the principle can be replaced by its quantum version, accepting as a common cause an entangled state, leaving the phenomenon as mysterious as ever on the classical level (on which, after all, it occurs). If, more radically, the causal structure is questioned in principle, closed space-time curves may become possible that, as is argued in the present note, can give rise to non-local correlations if to-be-correlated pieces of classical information meet in the common future --- which they need to if the correlation is to be detected in the first place. The result is a view resembling Brassard and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure

    The Emergence of Emotions

    Get PDF
    Emotion is conscious experience. It is the affective aspect of consciousness. Emotion arises from sensory stimulation and is typically accompanied by physiological and behavioral changes in the body. Hence an emotion is a complex reaction pattern consisting of three components: a physiological component, a behavioral component, and an experiential (conscious) component. The reactions making up an emotion determine what the emotion will be recognized as. Three processes are involved in generating an emotion: (1) identification of the emotional significance of a sensory stimulus, (2) production of an affective state (emotion), and (3) regulation of the affective state. Two opposing systems in the brain (the reward and punishment systems) establish an affective value or valence (stimulus-reinforcement association) for sensory stimulation. This is process (1), the first step in the generation of an emotion. Development of stimulus-reinforcement associations (affective valence) serves as the basis for emotion expression (process 2), conditioned emotion learning acquisition and expression, memory consolidation, reinforcement-expectations, decision-making, coping responses, and social behavior. The amygdala is critical for the representation of stimulus-reinforcement associations (both reward and punishment-based) for these functions. Three distinct and separate architectural and functional areas of the prefrontal cortex (dorsolateral prefrontal cortex, orbitofrontal cortex, anterior cingulate cortex) are involved in the regulation of emotion (process 3). The regulation of emotion by the prefrontal cortex consists of a positive feedback interaction between the prefrontal cortex and the inferior parietal cortex resulting in the nonlinear emergence of emotion. This positive feedback and nonlinear emergence represents a type of working memory (focal attention) by which perception is reorganized and rerepresented, becoming explicit, functional, and conscious. The explicit emotion states arising may be involved in the production of voluntary new or novel intentional (adaptive) behavior, especially social behavior

    Genome-Wide Distribution of RNA-DNA Hybrids Identifies RNase H Targets in tRNA Genes, Retrotransposons and Mitochondria

    Get PDF
    During transcription, the nascent RNA can invade the DNA template, forming extended RNA-DNA duplexes (R-loops). Here we employ ChIP-seq in strains expressing or lacking RNase H to map targets of RNase H activity throughout the budding yeast genome. In wild-type strains, R-loops were readily detected over the 35S rDNA region, transcribed by Pol I, and over the 5S rDNA, transcribed by Pol III. In strains lacking RNase H activity, R-loops were elevated over other Pol III genes, notably tRNAs, SCR1 and U6 snRNA, and were also associated with the cDNAs of endogenous TY1 retrotransposons, which showed increased rates of mobility to the 5'-flanking regions of tRNA genes. Unexpectedly, R-loops were also associated with mitochondrial genes in the absence of RNase H1, but not of RNase H2. Finally, R-loops were detected on actively transcribed protein-coding genes in the wild-type, particularly over the second exon of spliced ribosomal protein genes

    Effect of disposal of effluent and paunch from a meat processing factory on soil chemical and microbial properties

    No full text
    The effects of irrigation with meat processing factory effluent (MPE) in combination with additions of paunch to three arable sites and one pasture site on soil chemical and microbial properties were investigated in fields surrounding a beef meat processing factory. A pasture site that had only received MPE was also sampled along with adjoining arable and pasture control fields that had never received MPE or paunch. Additions of MPE/paunch caused increases in electrical conductivity, exchangeable Na and K, exchangeable sodium percentage (ESP), extractable P, organic C, total N, microbial biomass C, and metabolic quotient and decreases in exchangeable Ca and Mg, pH, and the proportion of organic C present as microbial biomass. The structure and diversity of bacterial and fungal communities was measured by polymerase chain reaction-denaturing gradient gel electrophoresis of 16S rDNA and internal transcribed spacer-RNA amplicons respectively and catabolic diversity by analysis of catabolic response profiles to 25 substrates. Principal component analysis of catabolic response profiles clearly separated control from MPE/paunch-treated sites, and this was associated with greater catabolic responses to the carboxylic acids α-ketoglutaric, α-ketobutyric, l-ascorbic, and citric acid in the control. At the arable sites, application of MPE and paunch caused increases in bacterial, fungal, and catabolic diversity. Canonical correspondence analysis of the relationship between catabolic, bacterial, and fungal fingerprints and soil properties indicated that the main soil variables separating MPE/paunch treatments from controls were the higher organic C, ESP, and extractable P and a lower pH, exchangeable Ca, and Mg. It was concluded that, although long-term MPE/paunch additions induce soil salinity, sodicity, and acidity, in general, they cause an increase in the size, activity, and structural and functional diversity of in the soil microbial community

    Profound Changes in Dopaminergic Neurotransmission in the Prefrontal Cortex in Response to Flattening of the Diurnal Glucocorticoid Rhythm: Implications for Bipolar Disorder

    No full text
    Patients with bipolar disorder have abnormalities in glucocorticoid secretion, dopaminergic neurotransmission, and prefrontal cortical function. We hypothesized that the flattening of the diurnal glucocorticoid rhythm, commonly seen in bipolar disorder, modulates dopaminergic neurotransmission in the prefrontal cortex (PFC) leading to abnormalities in prefrontally mediated neurocognitive functions. To address this hypothesis, we investigated the effects of a flattened glucocorticoid rhythm on (i) the release of dopamine in the PFC and (ii) the transcription of genes in the ventral tegmental area (VTA) coding for proteins involved in presynaptic aspects of dopaminergic neurotransmission. Male rats were treated for 13–15 days with corticosterone (50??g/ml in the drinking water) or vehicle (0.5% ethanol). Corticosterone treatment resulted in marked adrenal atrophy and flattening of the glucocorticoid rhythm as measured by repeated blood sampling. Animals treated with corticosterone showed markedly enhanced basal dopamine release in the PFC as measured by microdialysis in the presence of a dopamine reuptake inhibitor. Depolarization-evoked release was also enhanced, suggesting that the corticosterone effect on basal release did not result from an increase in the neuronal firing rate. Local blockade of terminal D2 autoreceptors failed to normalize release to control values, suggesting that the enhanced release was not because of reduced autoreceptor sensitivity. In situ hybridization histochemistry showed that mRNAs coding tyrosine hydroxylase and the vesicular monoamine transporter 2 were elevated in the VTA of corticosterone-treated rats. Our data show that flattening of the glucocorticoid rhythm increases dopamine release in the PFC possibly as a result of increased synthesis and vesicular storage. This provides a mechanistic explanation for prefrontal dysfunction in bipolar and other affective disorders associated with glucocorticoid dysrhythmia
    corecore