58 research outputs found

    Structural control of mixed ionic and electronic transport in conducting polymers.

    Get PDF
    UNLABELLED: Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT: PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT: PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced changes in nano- and meso-scale structure in PEDOT: PSS films. We quantify domain composition, and find that domain purification on addition of dispersion co-solvents limits ion mobility, even while electronic conductivity improves. We show that an optimal morphology allows for the balanced ionic and electronic transport that is critical for prototypical mixed conductor devices. These findings may pave the way for the rational design of polymeric materials and processing routes to enhance devices reliant on mixed conduction

    A novel method for spectrophotometric determination of pregabalin in pure form and in capsules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregabalin, a Ξ³-amino-n-butyric acid derivative, is an antiepileptic drug not yet official in any pharmacopeia and development of analytical procedures for this drug in bulk/formulation forms is a necessity. We herein, report a new, simple, extraction free, cost effective, sensitive and reproducible spectrophotometric method for the determination of the pregabalin.</p> <p>Results</p> <p>Pregabalin, as a primary amine was reacted with ninhydrin in phosphate buffer pH 7.4 to form blue violet colored chromogen which could be measured spectrophotometrically at Ξ»<sub>max </sub>402.6 nm. The method was validated with respect to linearity, accuracy, precision and robustness. The method showed linearity in a wide concentration range of 50-1000 ΞΌg mL<sup>-1 </sup>with good correlation coefficient (0.992). The limits of assays detection was found to be 6.0 ΞΌg mL<sup>-1 </sup>and quantitation limit was 20.0 ΞΌg mL<sup>-1</sup>. The suggested method was applied to the determination of the drug in capsules. No interference could be observed from the additives in the capsules. The percentage recovery was found to be 100.43 Β± 1.24.</p> <p>Conclusion</p> <p>The developed method was successfully validated and applied to the determination of pregabalin in bulk and pharmaceutical formulations without any interference from common excipients. Hence, this method can be potentially useful for routine laboratory analysis of pregabalin.</p

    The neural basis of auditory temporal discrimination in girls with fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is a common genetic disorder in which temporal processing may be impaired. To our knowledge however, no studies have examined the neural basis of temporal discrimination in individuals with FXS using functional magnetic resonance imaging (fMRI). Ten girls with fragile X syndrome and ten developmental age-matched typically developing controls performed an auditory temporal discrimination task in a 3T scanner. Girls with FXS showed significantly greater brain activation in a left-lateralized network, comprising left medial frontal gyrus, left superior and middle temporal gyrus, left cerebellum, and left brainstem (pons), when compared to a developmental age-matched typically developing group of subjects who had similar in-scanner task performance. There were no regions that showed significantly greater brain activation in the control group compared to individuals with FXS. These data indicate that networks of brain regions involved in auditory temporal processing may be dysfunctional in FXS. In particular, it is possible that girls with FXS employ left hemispheric resources to overcompensate for relative right hemispheric dysfunction

    Syndecan-1 promotes the angiogenic phenotype of multiple myeloma endothelial cells

    Get PDF
    Angiogenesis is considered a hallmark of multiple myeloma (MM) progression. In the present study, we evaluated the morphological and functional features of endothelial cells (ECs) derived from bone marrow (BM) of patients affected by MM (MMECs). We found that MMECs compared with normal BM ECs (BMECs) showed increased expression of syndecan-1. Silencing of syndecan-1 expression by RNA interference technique decreased in vitro EC survival, proliferation and organization in capillary-like structures. In vivo, in severe combined immunodeficient mice, syndecan-1 silencing inhibited MMEC organization into patent vessels. When overexpressed in human umbilical vein ECs and BMECs, syndecan-1 induced in vitro and in vivo angiogenic effects. Flow-cytometric analysis of MMECs silenced for syndecan-1 expression indicated a decreased membrane expression of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2). Immunoprecipitation and confocal analysis showed colocalization of VEGFR-2 with syndecan-1. Absence of nuclear translocation of VEGFR-2 in syndecan-1-knockdown cells together with the shift from perinuclear localization to recycling compartments suggest a role of syndecan-1 in modulation of VEGFR-2 localization. This correlated with an in vitro decreased VEGF-induced invasion and motility. These results suggest that syndecan-1 may contribute to the highly angiogenic phenotype of MMECs by promoting EC proliferation, survival and modulating VEGF–VEGFR-2 signalling

    Patient-reported-outcomes in subjects with painful lumbar or cervical radiculopathy treated with pregabalin: evidence from medical practice in primary care settings

    Get PDF
    The objective of this study was to evaluate the effect of pregabalin in painful cervical or lumbosacral radiculopathy treated in Primary Care settings under routine clinical practice. An observational, prospective 12-week secondary analysis was carried-out. Male and female above 18Β years, naΓ―ve to PGB, with refractory chronic pain secondary to cervical/lumbosacral radiculopathy were enrolled. SF-MPQ, Sheehan Disability Inventory, MOS Sleep Scale, Hospital Anxiety and Depression Scale and the EQ-5D were administered. A total of 490 (34%) patients were prescribed PGB-monotherapy, 702 (48%) received PGB add-on, and 159 (11%) were administered non-PGB drugs. After 12Β weeks, significant improvements in pain, associated symptoms of anxiety, depression and sleep disturbances, general health; and level of disability were observed in the three groups, being significantly greater in PGB groups. In routine medical practice, monotherapy or add-on pregabalin is associated with substantial pain alleviation and associated symptoms improvements in painful cervical or lumbosacral radiculopathy

    Resistance to paclitaxel in a cisplatin-resistant ovarian cancer cell line is mediated by P-glycoprotein

    Get PDF
    The IGROVCDDP cisplatin-resistant ovarian cancer cell line is also resistant to paclitaxel and models the resistance phenotype of relapsed ovarian cancer patients after first-line platinum/taxane chemotherapy. A TaqMan low-density array (TLDA) was used to characterise the expression of 380 genes associated with chemotherapy resistance in IGROVCDDP cells. Paclitaxel resistance in IGROVCDDP is mediated by gene and protein overexpression of P-glycoprotein and the protein is functionally active. Cisplatin resistance was not reversed by elacridar, confirming that cisplatin is not a P-glycoprotein substrate. Cisplatin resistance in IGROVCDDP is multifactorial and is mediated in part by the glutathione pathway and decreased accumulation of drug. Total cellular glutathione was not increased. However, the enzyme activity of GSR and GGT1 were up-regulated. The cellular localisation of copper transporter CTR1 changed from membrane associated in IGROV-1 to cytoplasmic in IGROVCDDP. This may mediate the previously reported accumulation defect. There was decreased expression of the sodium potassium pump (ATP1A), MRP1 and FBP which all have been previously associated with platinum accumulation defects in platinum-resistant cell lines. Cellular localisation of MRP1 was also altered in IGROVCDDP shifting basolaterally, compared to IGROV-1. BRCA1 was also up-regulated at the gene and protein level. The overexpression of P-glycoprotein in a resistant model developed with cisplatin is unusual. This demonstrates that P-glycoprotein can be up-regulated as a generalised stress response rather than as a specific response to a substrate. Mechanisms characterised in IGROVCDDP cells may be applicable to relapsed ovarian cancer patients treated with frontline platinum/taxane chemotherapy

    The relationship between organisational characteristics and the effects of clinical guidelines on medical performance in hospitals, a meta-analysis

    Get PDF
    We are grateful to our colleagues involved in the systematic review of guideline dissemination and implementation strategies across all settings especially Cynthia Fraser, Graeme MacLennan, Craig Ramsay, Paula Whitty, Martin Eccles, Lloyd Matowe, Liz Shirran. The systematic review of guideline dissemination and implementation strategies across all settings was funded by the UK NHS Health Technology Assessment Program. Dr Ruth Thomas is funded by a Wellcome Training Fellowship in Health Services Research. (Grant number GR063790MA). The Health Services Research Unit is funded by the Chief Scientists Office of the Scottish Executive Department of Health. Dr Jeremy Grimshaw holds a Canada Research Chair in Health Knowledge Transfer and Uptake. However the views expressed are those of the authors and not necessarily the funders.Peer reviewedPublisher PD

    The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell

    Get PDF
    Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche
    • …
    corecore