7 research outputs found

    Dynein, Lis1 and CLIP-170 counteract Eg5-dependent centrosome separation during bipolar spindle assembly

    No full text
    Bipolar spindle assembly critically depends on the microtubule plus-end-directed motor Eg5 that binds antiparallel microtubules and slides them in opposite directions. As such, Eg5 can produce the necessary outward force within the spindle that drives centrosome separation and inhibition of this antiparallel sliding activity results in the formation of monopolar spindles. Here, we show that upon depletion of the minus-end-directed motor dynein, or the dynein-binding protein Lis1, bipolar spindles can form in human cells with substantially less Eg5 activity, suggesting that dynein and Lis1 produce an inward force that counteracts the Eg5-dependent outward force. Interestingly, we also observe restoration of spindle bipolarity upon depletion of the microtubule plus-end-tracking protein CLIP-170. This function of CLIP-170 in spindle bipolarity seems to be mediated through its interaction with dynein, as loss of CLIP-115, a highly homologous protein that lacks the dynein–dynactin interaction domain, does not restore spindle bipolarity. Taken together, these results suggest that complexes of dynein, Lis1 and CLIP-170 crosslink and slide microtubules within the spindle, thereby producing an inward force that pulls centrosomes together

    Control of the spindle checkpoint by lateral kinetochore attachment and limited Mad1 recruitment

    No full text
    We observed the dynamic recruitment of spindle checkpoint proteins Mad1 and Bub1 to detached kinetochores in budding yeast using real-time live-cell imaging and quantified recruitment in fixed cells. After induced de novo kinetochore assembly at one pair of sister centromeres, Mad1 appeared after the kinetochore protein Mtw1. Detached kinetochores were not associated with the nuclear envelope, so Mad1 does not anchor them to nuclear pore complexes (NPCs). Disrupting Mad1's NPC localization increased Mad1 recruitment to detached sister kinetochores. Conversely, increasing the number of detached kinetochores reduced the amount of Mad1 per detached kinetochore. Bub1 also relocalized completely from the spindle to detached sister centromeres after kinetochore assembly. After their capture by microtubules, Mad1 and Bub1 progressively disappeared from kinetochores. Sister chromatids that arrested with a lateral attachment to one microtubule exhibited half the Mad1 of fully detached sisters. We propose that detached kinetochores compete with alternate binding sites in the nucleus to recruit Mad1 and Bub1 from available pools that are small enough to be fully depleted by just one pair of detached kinetochores and that lateral attachment licenses Mad1 removal from kinetochores after a kinetic delay

    Regulators of the cytoplasmic dynein motor

    No full text
    corecore