41 research outputs found

    Progressive, Transgenerational Changes in Offspring Phenotype and Epigenotype following Nutritional Transition

    Get PDF
    Induction of altered phenotypes during development in response to environmental input involves epigenetic changes. Phenotypic traits can be passed between generations by a variety of mechanisms, including direct transmission of epigenetic states or by induction of epigenetic marks de novo in each generation. To distinguish between these possibilities we measured epigenetic marks over four generations in rats exposed to a sustained environmental challenge. Dietary energy was increased by 25% at conception in F0 female rats and maintained at this level to generation F3. F0 dams showed higher pregnancy weight gain, but lower weight gain and food intake during lactation than F1 and F2 dams. On gestational day 8, fasting plasma glucose concentration was higher and β-hydroxybutyrate lower in F0 and F1 dams than F2 dams. This was accompanied by decreased phosphoenolpyruvate carboxykinase (PEPCK) and increased PPARα and carnitine palmitoyl transferase-1 mRNA expression. PEPCK mRNA expression was inversely related to the methylation of specific CpG dinucleotides in its promoter. DNA methyltransferase (Dnmt) 3a2, but not Dnmt1 or Dnmt3b, expression increased and methylation of its promoter decreased from F1 to F3 generations. These data suggest that the regulation of energy metabolism during pregnancy and lactation within a generation is influenced by the maternal phenotype in the preceding generation and the environment during the current pregnancy. The transgenerational effects on phenotype were associated with altered DNA methylation of specific genes in a manner consistent with induction de novo of epigenetic marks in each generation

    Patterns of infant handling and relatedness in Barbary macaques (Macaca sylvanus) on Gibraltar

    Full text link
    Among papionin primates, the Barbary macaque (Macaca sylvanus) shows the most extensive interactions between infants and group members other than the mother. Two different types of interactions occur: (1) long-lasting dyadic interactions between a handler and an infant, and (2) brief triadic interactions between two handlers involving an infant. Previous investigations showed that infant handling by males is best explained as use of infants to manage relationships with other males. In contrast, no adaptive explanation for infant handling by females emerged. Here, we compared the infant-handling pattern between subadult/adult males and subadult/adult females in a free-ranging group of 46 Barbary macaques on Gibraltar to test whether the relationship management hypothesis also applies to female handlers. We further investigated the infant-handling pattern of juveniles and used microsatellite markers to estimate relatedness between infant handlers and the infant’s mother. We found that males, females and juveniles all participated extensively in triadic interactions using infants of above-average related females. In contrast, only males and juveniles were highly involved in dyadic interactions with infants of related females, while females rarely handled infants otherthan their own. The pattern of infant handling was entirely compatible with the predictions of the relationship management hypothesis for males and mostly so for females. Moreover, our genetic analysis revealed that males and females differ in their partner choice: while females preferred to interact with related females, males had no significant preference to interact with related males. We further discuss the observed above-average relatedness values between infant handlers and the infant’s mother in the light of kin-selection theory

    Maternal Behavior is Impaired in Female Mice Lacking Type 3 Adenylyl Cyclase

    Get PDF
    Although chemosensory signals generated by mouse pups may trigger maternal behavior of females, the mechanism for detection of these signals has not been fully defined. As some odorant receptors are coupled to the type 3 adenylyl cyclase (AC3), we evaluated the role of AC3 for maternal behavior using AC3−/− female mice. Here, we report that maternal behavior is impaired in virgin and postpartum AC3−/− mice. Female AC3−/− mice failed the pup retrieval assay, did not construct well-defined nests, and did not exhibit maternal aggression. Furthermore, AC3−/− females could not detect odorants or pup urine in the odorant habituation test and were unable to detect pups by chemoreception. In contrast to wild-type mice, AC activity in main olfactory epithelium (MOE) preparations from AC3−/− female mice was not stimulated by odorants or pheromones. Moreover, odorants and pheromones did not evoke electro-olfactogram (EOG) responses in the MOE of AC3−/− female mice. We hypothesize that the detection of chemical signals that trigger maternal behavior in female mice depends upon AC3 in the MOE

    To Each According to His Need? Variability in the Responses to Inequity in Nonhuman Primates

    Get PDF
    While it is well established that humans respond to inequity, it remains unclear the extent to which this behavior occurs in our nonhuman primate relatives. By comparing a variety of species, spanning from New World and Old World monkeys to great apes, scientists can begin to answer questions about how the response to inequity evolved, what the function of this response is, and why and how different contexts shape it. In particular, research across nonhuman primate species suggests that the response is quite variable across species, contexts and individuals. In this paper, we aim to review these differences in an attempt to identify and better understand the patterns that emerge from the existing data with the goal of developing directions for future research. To begin, we address the importance of considering socio-ecological factors in nonhuman primates in order to better understand and predict expected patterns of cooperation and aversion to inequity in different species, following which we provide a detailed analysis of the patterns uncovered by these comparisons. Ultimately, we use this synthesis to propose new ideas for research to better understand this response and, hence, the evolution of our own responses to inequity

    To Each According to his Need? Variability in the Responses to Inequity in Non-Human Primates

    Full text link

    Tool transfers are a form of teaching among chimpanzees

    Get PDF
    Teaching is a form of high-fidelity social learning that promotes human cumulative culture. Although recently documented in several nonhuman animals, teaching is rare among primates. In this study, we show that wild chimpanzees (Pan troglodytes troglodytes) in the Goualougo Triangle teach tool skills by providing learners with termite fishing probes. Tool donors experienced significant reductions in tool use and feeding, while tool recipients significantly increased their tool use and feeding after tool transfers. These transfers meet functional criteria for teaching: they occur in a learner’s presence, are costly to the teacher, and improve the learner’s performance. Donors also showed sophisticated cognitive strategies that effectively buffered them against potential costs. Teaching is predicted when less costly learning mechanisms are insufficient. Given that these chimpanzees manufacture sophisticated, brush-tipped fishing probes from specific raw materials, teaching in this population may relate to the complexity of these termite-gathering tasks
    corecore