3 research outputs found

    Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states.

    Get PDF
    Complex I (NADH:ubiquinone oxidoreductase) uses the reducing potential of NADH to drive protons across the energy-transducing inner membrane and power oxidative phosphorylation in mammalian mitochondria. Recent cryo-EM analyses have produced near-complete models of all 45 subunits in the bovine, ovine and porcine complexes and have identified two states relevant to complex I in ischemia-reperfusion injury. Here, we describe the 3.3-Å structure of complex I from mouse heart mitochondria, a biomedically relevant model system, in the 'active' state. We reveal a nucleotide bound in subunit NDUFA10, a nucleoside kinase homolog, and define mechanistically critical elements in the mammalian enzyme. By comparisons with a 3.9-Å structure of the 'deactive' state and with known bacterial structures, we identify differences in helical geometry in the membrane domain that occur upon activation or that alter the positions of catalytically important charged residues. Our results demonstrate the capability of cryo-EM analyses to challenge and develop mechanistic models for mammalian complex I

    Widening the Heterogeneity of Leigh Syndrome: Clinical, Biochemical, and Neuroradiologic Features in a Patient Harboring a NDUFA10 Mutation

    No full text
    Leigh syndrome (LS) is an early-onset progressive neurodegenerative disorder, characterized by a wide clinical and genetic heterogeneity, and is the most frequent disorder of mitochondrial energy production in children. Beside its great variability in clinical, biochemical, and genetic features, LS is pathologically uniformly characterized by multifocal bilateral and symmetric spongiform degeneration of the basal ganglia, brainstem, thalamus, cerebellum, spinal cord, and optic nerves. Isolated complex I deficiency is the most common defect identified in Leigh syndrome. In 2011, the first child with a mutation of NDUFA10 gene, coding for an accessory subunits of complex I, was described. Here, we present an additional description of a child with Leigh syndrome harboring a homozygous mutation in NDUFA10, providing insights in clinical, biochemical, and neuroradiologic features for future earlier recognition
    corecore