36 research outputs found

    The influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The formation of adhesions following abdominal surgery is a well known problem. In previous studies we demonstrated the efficacy and safety of intraperitoneally applied phospholipids in order to prevent adhesion formation. This study evaluates the influence of blood on the efficacy of intraperitoneally applied phospholipids for prevention of adhesions.</p> <p>Methods</p> <p>In 40 Chinchilla rabbits adhesions were induced by median laparotomy, standardized abrasion of the visceral and parietal peritoneum in defined areas of the ventral abdominal wall and the caecum. The animals were randomly divided into four groups. They received either phospholipids 3.0% or normal saline (NaCl 0,9%) (5 ml/kg body weight). In 50% of the rabbits we simulated intraperitoneal bleeding by administration of blood (1,5 ml/kg body weight). The other half served as control group. Ten days following the operation the animals were sacrificed and adhesion formation was assessed by computer aided planimetry and histopathologic examination.</p> <p>Results</p> <p>The median adhesion surface area in the NaCl-group (n = 9) amounted to 68,72 mm<sup>2</sup>, in the NaCl+Blood-group (n = 10) 147,68 mm<sup>2</sup>. In the Phospholipid (PhL)-group (n = 9) the median adhesion surface area measured 9,35 mm<sup>2</sup>, in the PhL+Blood-group (n = 9) 11,95 mm<sup>2</sup>. The phospholipid groups had a significantly smaller adhesion surface area (p < 0.05).</p> <p>Conclusion</p> <p>Again these results confirm the efficacy of phospholipids in the prevention of adhesions in comparison to NaCl (p = 0,04). We also demonstrated the adhesion preventing effect of phospholipids in the presence of intraperitoneal blood.</p

    The Pseudomonas aeruginosa Chemotaxis Methyltransferase CheR1 Impacts on Bacterial Surface Sampling

    Get PDF
    The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa

    Micronutrient fortification of food and its impact on woman and child health: A systematic review

    Get PDF
    Background: Vitamins and minerals are essential for growth and metabolism. The World Health Organization estimates that more than 2 billion people are deficient in key vitamins and minerals. Groups most vulnerable to these micronutrient deficiencies are pregnant and lactating women and young children, given their increased demands. Food fortification is one of the strategies that has been used safely and effectively to prevent vitamin and mineral deficiencies.Methods: A comprehensive search was done to identify all available evidence for the impact of fortification interventions. Studies were included if food was fortified with a single, dual or multiple micronutrients and impact of fortification was analyzed on the health outcomes and relevant biochemical indicators of women and children. We performed a meta-analysis of outcomes using Review Manager Software version 5.1.Results: Our systematic review identified 201 studies that we reviewed for outcomes of relevance. Fortification for children showed significant impacts on increasing serum micronutrient concentrations. Hematologic markers also improved, including hemoglobin concentrations, which showed a significant rise when food was fortified with vitamin A, iron and multiple micronutrients. Fortification with zinc had no significant adverse impact on hemoglobin levels. Multiple micronutrient fortification showed non-significant impacts on height for age, weight for age and weight for height Z-scores, although they showed positive trends. The results for fortification in women showed that calcium and vitamin D fortification had significant impacts in the post-menopausal age group. Iron fortification led to a significant increase in serum ferritin and hemoglobin levels in women of reproductive age and pregnant women. Folate fortification significantly reduced the incidence of congenital abnormalities like neural tube defects without increasing the incidence of twinning. The number of studies pooled for zinc and multiple micronutrients for women were few, though the evidence suggested benefit. There was a dearth of evidence for the impact of fortification strategies on morbidity and mortality outcomes in women and children.Conclusion: Fortification is potentially an effective strategy but evidence from the developing world is scarce. Programs need to assess the direct impact of fortification on morbidity and mortality
    corecore