88 research outputs found

    Slab melting as a barrier to deep carbon subduction

    Get PDF
    Interactions between crustal and mantle reservoirs dominate the surface inventory of volatile elements over geological time, moderating atmospheric composition and maintaining a lifesupporting planet1. While volcanoes expel volatile components into surface reservoirs, subduction of oceanic crust is responsible for replenishment of mantle reservoirs2,3. Many natural, ‘superdeep’ diamonds originating in the deep upper mantle and transition zone host mineral inclusions, indicating an affinity to subducted oceanic crust4–7. Here we show that the majority of slab geotherms will intersect a deep depression along the melting curve of carbonated oceanic crust at depths of approximately 300 to 700 kilometres, creating a barrier to direct carbonate recycling into the deep mantle. Low-degree partial melts are alkaline carbonatites that are highly reactive with reduced ambient mantle, producing diamond. Many inclusions in superdeep diamonds are best explained by carbonate melt–peridotite reaction. A deep carbon barrier may dominate the recycling of carbon in the mantle and contribute to chemical and isotopic heterogeneity of the mantle reservoir

    Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15° 20′N : ODP Hole 1274A

    Get PDF
    Author Posting. © The Authors, 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Contributions to Mineralogy and Petrology 153 (2007): 303-319, doi:10.1007/s00410-006-0148-6.ODP Leg 209 Site 1274 mantle peridotites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg# (up to 0.92) and spinel Cr# (~0.5), suggesting high degree of partial melting (>20%). Detailed studies of their microstructures show that they have extensively reacted with a pervading intergranular melt prior to cooling in the lithosphere, leading to crystallization of olivine, clinopyroxene and spinel at the expense of orthopyroxene. The least reacted harzburgites are too rich in orthopyroxene to be simple residues of low-pressure (spinel field) partial melting. Cu-rich sulfides that precipitated with the clinopyroxenes indicate that the intergranular melt was generated by no more than 12% melting of a MORB mantle or by more extensive melting of a clinopyroxene-rich lithology. Rare olivine-rich lherzolitic domains, characterized by relics of coarse clinopyroxenes intergrown with magmatic sulfides, support the second interpretation. Further, coarse and intergranular clinopyroxenes are highly depleted in REE, Zr and Ti. A two-stage partial melting/melt-rock reaction history is proposed, in which initial mantle underwent depletion and refertilization after an earlier high pressure (garnet field) melting event before upwelling and remelting beneath the present-day ridge. The ultra-depleted compositions were acquired through melt re-equilibration with residual harzburgites.Funding for this research was provided by Centre National de la Recherche Scientifique-Institut National des Sciences de l’Univers (Programme Dynamique et Evolution de la Terre Interne)

    Partner in fat metabolism: role of KLFs in fat burning and reproductive behavior

    Get PDF
    The abnormalities caused by excess fat accumulation can result in pathological conditions which are linked to several interrelated diseases, such as cardiovascular disease and obesity. This set of conditions, known as metabolic syndrome, is a global pandemic of enormous medical, economic, and social concern affecting a significant portion of the world’s population. Although genetics, physiology and environmental components play a major role in the onset of disease caused by excessive fat accumulation, little is known about how or to what extent each of these factors contributes to it. The worm, Caenorhabditis elegans offers an opportunity to study disease related to metabolic disorder in a developmental system that provides anatomical and genomic simplicity relative to the vertebrate animals and is an excellent eukaryotic genetic model which enable us to answer the questions concerning fat accumulation which remain unresolved. The stored triglycerides (TG) provide the primary source of energy during periods of food deficiency. In nature, lipid stored as TGs are hydrolyzed into fatty acids which are broken down through β-oxidation to yield acetyl-CoA. Our recent study suggests that a member of C. elegans Krüppel-like factor, klf-3 regulates lipid metabolism by promoting FA β-oxidation and in parallel may contribute in normal reproduction and fecundity. Genetic and epigenetic factors that influence this pathway may have considerable impact on fat related diseases in human. Increasing number of studies suggest the role of mammalian KLFs in adipogenesis. This functional conservation should guide our further effort to explore C. elegans as a legitimate model system for studying the role of KLFs in many pathway components of lipid metabolism

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    Internet-based self-help treatment for depression in multiple sclerosis: study protocol of a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Depression in MS patients is frequent but often not treated adequately. An important underlying factor may be physical limitations that preclude face-to-face contact. Internet-based treatment showed to be effective for depressive symptoms in general and could thus be a promising tool for treatment in MS.</p> <p>Methods/design</p> <p>Here, we present a study protocol to investigate the effectiveness of a 5 week Internet-based self-help problem solving treatment (PST) for depressive symptoms in MS patients in a randomized controlled trial. We aim to include 166 MS patients with moderate to severe depressive symptoms who will be randomly assigned to an Internet-based intervention (with or without supportive text-messages) or waiting list control group. The primary outcome is the change in depressive symptoms defined by a change in the sum score on the Beck Depression Inventory (BDI-II). Secondary outcomes will include measures of anxiety, fatigue, cognitive functioning, physical and psychological impact of MS, quality of life, problem solving skills, social support, mastery, satisfaction and compliance rate. Assessments will take place at baseline (T0), within a week after the intervention (T1), at four months (T2) and at ten months follow-up (T3: only the intervention group). The control group will be measured at the same moments in time. Analysis will be based on the intention-to-treat principle.</p> <p>Discussion</p> <p>If shown to be effective, Internet-based PST will offer new possibilities to reach and treat MS patients with depressive symptoms and to improve the quality of care.</p> <p>Trial Registration</p> <p>The Dutch Cochrane Center, NTR2772</p

    Application Of Stable Isotope Analysis To Study Temporal Changes In Foraging Ecology In A Highly Endangered Amphibian

    Get PDF
    Background -- Understanding dietary trends for endangered species may be essential to assessing the effects of ecological disturbances such as habitat modification, species introductions or global climate change. Documenting temporal variation in prey selection may also be crucial for understanding population dynamics. However, the rarity, secretive behaviours and obscure microhabitats of some endangered species can make direct foraging observations difficult or impossible. Furthermore, the lethality or invasiveness of some traditional methods of dietary analysis (e.g. gut contents analysis, gastric lavage) makes them inappropriate for such species. Stable isotope analysis facilitates non-lethal, indirect analysis of animal diet that has unrealized potential in the conservation of endangered organisms, particularly amphibians. Methodology/findings -- I determined proportional contributions of aquatic macroinvertebrate prey to the diet of an endangered aquatic salamander Eurycea sosorum over a two-year period using stable isotope analysis of 13/12C and 15/14N and the Bayesian stable isotope mixing model SIAR. I calculated Strauss’ dietary electivity indices by comparing these proportions with changing relative abundance of potential prey species through time. Stable isotope analyses revealed that a previously unknown prey item (soft-bodied planarian flatworms in the genus Dugesia) made up the majority of E. sosorum diet. Results also demonstrate that E. sosorum is an opportunistic forager capable of diet switching to include a greater proportion of alternative prey when Dugesia populations decline. There is also evidence of intra-population dietary variation. Conclusions/significance -- Effective application of stable isotope analysis can help circumvent two key limitations commonly experienced by researchers of endangered species: the inability to directly observe these species in nature and the invasiveness or lethality of traditional methods of dietary analysis. This study illustrates the feasibility of stable isotope analysis in identifying preferred prey species that can be used to guide conservation management of both wild and captive food sources for endangered species.This work was generously funded by a Sigma Xi Grant-In-Aid of Research (http://www.sigmaxi.org/programs/giar/ind​ex.shtml), a Howard McCarley Student Research Award from the Southwestern Association of Naturalists (http://biosurvey.ou.edu/swan/stuaeng.htm​#_HOWARD_MCCARLEY), a grant from the Barton Springs Salamander Conservation Fund (administered by the City of Austin and Austin Community Foundation; http://www.austincommunityfoundation.org​/?nd=news#Salamander) and grants from the Zoology Scholarship Endowment for Excellence, Dorothea Bennett Memorial Graduate Fellowship and Terrell H. Hamilton Endowed Graduate Fellowship at the University of Texas at Austin (http://www.biosci.utexas.edu/graduate/ee​b/current.aspx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    The trophic link between squid and the emperor penguin Aptenodytes forsteri at Pointe Géologie, Antarctica

    Get PDF
    Cephalopod beaks retrieved from stomachs of dead emperor penguin chicks at Pointe Géologie, Terre Adélie, provide information on taxonomic and size composition of the penguin’s squid diet, on the trophic range of the squid species preyed upon and on the fractional trophic impact of the penguin on the whole food web. Emperor penguins prey upon four squid species (Psychroteuthis glacialis, Kondakovia longimana, Gonatus antarcticus, Alluroteuthis antarcticus) and do not take squid larger than 480 mm mantle length. Larger squid live either below the penguin’s diving range or are beyond its handling capacity. Nitrogen stable isotope ratios indicate that squids cover a range of about two trophic levels (2.5–8‰ δ15N). The impact of the emperor penguin, however, concentrates on the upper part of this range, about 68% of its squid prey being >6‰ δ15N. The principal components of the emperor’s diet, fish, krill and squid, differ distinctly in average trophic level. Consequently the trophic position of the emperor penguin changes accordingly with diet composition and may differ by almost one trophic level between different emperor penguin colonies

    Diversity and distribution patterns in high southern latitude sponges

    Get PDF
    Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ,43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity
    corecore