141 research outputs found

    Multi-color Molecular Visualization of Signaling Proteins Reveals How C-Terminal Src Kinase Nanoclusters Regulate T Cell Receptor Activation

    Get PDF
    Elucidating the mechanisms that controlled T cell activation requires visualization of the spatial organization of multiple proteins on the submicron scale. Here, we use stoichiometrically accurate, multiplexed, singlemolecule super-resolution microscopy (DNA-PAINT) to image the nanoscale spatial architecture of the primary inhibitor of the T cell signaling pathway, Csk, and two binding partners implicated in its membrane association, PAG and TRAF3. Combined with a newly developed co-clustering analysis framework, we find that Csk forms nanoscale clusters proximal to the plasma membrane that are lost post-stimulation and are re-recruited at later time points. Unexpectedly, these clusters do not co-localize with PAG at the membrane but instead provide a ready pool of monomers to downregulate signaling. By generating CRISPR-Cas9 knockout T cells, our data also identify that a major risk factor for autoimmune diseases, the protein tyrosine phosphatase non-receptor type 22 (PTPN22) locus, is essential for Csk nanocluster re-recruitment and for maintenance of the synaptic PAG population

    Risk factors for pre-term birth in Iraq: a case-control study

    Get PDF
    BACKGROUND: Preterm birth (PTB)is a major clinical problem associated with perinatal mortality and morbidity. The aim of the present study is to identify risk factors associated with PTB in Mosul, Iraq. METHODS: A case-control study was conducted in Mosul, Iraq, from 1(st )September, 2003 to 28(th )February, 2004. RESULTS: A total of 200 cases of PTB and 200 controls of full-term births were screened and enrolled in the study. Forward logistic regression analysis was used in the analysis. Several significant risk associations between PTB and the following risk factors were identified: poor diet (OR = 4.33), heavy manual work (OR = 1.70), caring for domestic animals (OR = 5.06), urinary tract infection (OR = 2.85), anxiety (OR = 2.16), cervical incompetence (OR = 4.74), multiple pregnancies (OR = 7.51), direct trauma to abdomen (OR = 3.76) and abortion (OR = 6.36). CONCLUSION: The main determinants of PTB in Iraq were low socio-economic status and factors associated with it, such as heavy manual work and caring for domestic animals, in addition to urinary tract infections and poor obstetric history

    Increased expression of the ubiquitin – proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-κB

    Get PDF
    Proteolysis-inducing factor (PIF), isolated from a cachexia-inducing murine tumour, has been shown to stimulate protein breakdown in C 2C12 myotubes. The effect was attenuated by the specific proteasome inhibitor lactacystin and there was an elevation of proteasome 'chymotrypsin-like' enzyme activity and expression of 205 proteasome α-subunits at concentrations of PIF between 2 and 16 nM. Higher concentrations of PIF had no effect. The action of PIF was attenuated by eicosapentaenoic acid (EPA) (50 μM). At a concentration of 4 nM, PIF induced a transient decrease in IκBα levels after 30 min incubation, while no effect was seen at 20 nM PIF. The level of IκBα, an NF-κB inhibitory protein, returned to normal after 60 min. Depletion of IκBα from the cytosol was not seen in myotubes pretreated with EPA, suggesting that the NF-κB/IκB complex was stabilised. At concentrations between 2 and 8 nM, PIF stimulated an increased nuclear migration of NF-κB, which was not seen in myotubes pretreated with EPA. The PIF-induced increase in chymotrypsin-like enzyme activity was also attenuated by the NF-κB inhibitor peptide SN50, suggesting that NF-κB may be involved in the PIF-induced increase in proteasome expression. The results further suggest that EPA may attenuate protein degradation induced by PIF, at least partly, by preventing NF-κB accumulation in the nucleus. © 2003 Cancer Research UK

    Xenograft models of head and neck cancers

    Get PDF
    Head and neck cancers are among the most prevalent tumors in the world. Despite advances in the treatment of head and neck tumors, the survival of patients with these cancers has not markedly improved over the past several decades because of our inability to control and our poor understanding of the regional and distant spread of this disease. One of the factors contributing to our poor understanding may be the lack of reliable animal models of head and neck cancer metastasis. The earliest xenograft models in which human tumor cells were grown in immunosuppressed mice involved subcutaneous implantation of human head and neck cancer cell lines. Subcutaneous xenograft models have been popular because they are easy to establish, easy to manage, and lend themselves to ready quantitation of the tumor burden. More recently, orthotopic xenograft models, in which the tumor cells are implanted in the tumor site of origin, have been used with greater frequency in animal studies of head and neck cancers. Orthotopic xenograft models are advantageous for their ability to mimic local tumor growth and recapitulate the pathways of metastasis seen in human head and neck cancers. In addition, recent innovations in cell labeling techniques and small-animal imaging have enabled investigators to monitor the metastatic process and quantitate the growth and spread of orthopically implanted tumors. This review summarizes the progress in the development of murine xenograft models of head and neck cancers. We then discuss the advantages and disadvantages of each type of xenograft model. We also discuss the potential for these models to help elucidate the mechanisms of regional and distant metastasis, which could improve our ability to treat head and neck cancers

    Elevational Gradients in Bird Diversity in the Eastern Himalaya: An Evaluation of Distribution Patterns and Their Underlying Mechanisms

    Get PDF
    BACKGROUND: Understanding diversity patterns and the mechanisms underlying those patterns along elevational gradients is critically important for conservation efforts in montane ecosystems, especially those that are biodiversity hotspots. Despite recent advances, consensus on the underlying causes, or even the relative influence of a suite of factors on elevational diversity patterns has remained elusive. METHODS AND PRINCIPAL FINDINGS: We examined patterns of species richness, density and range size distribution of birds, and the suite of biotic and abiotic factors (primary productivity, habitat variables, climatic factors and geometric constraints) that governs diversity along a 4500-m elevational gradient in the Eastern Himalayan region, a biodiversity hotspot within the world's tallest mountains. We used point count methods for sampling birds and quadrats for estimating vegetation at 22 sites along the elevational gradient. We found that species richness increased to approximately 2000 m, then declined. We found no evidence that geometric constraints influenced this pattern, whereas actual evapotranspiration (a surrogate for primary productivity) and various habitat variables (plant species richness, shrub density and basal area of trees) accounted for most of the variation in bird species richness. We also observed that ranges of most bird species were narrow along the elevation gradient. We find little evidence to support Rapoport's rule for the birds of Sikkim region of the Himalaya. CONCLUSIONS AND SIGNIFICANCE: This study in the Eastern Himalaya indicates that species richness of birds is highest at intermediate elevations along one of the most extensive elevational gradients ever examined. Additionally, primary productivity and factors associated with habitat accounted for most of the variation in avian species richness. The diversity peak at intermediate elevations and the narrow elevational ranges of most species suggest important conservation implications: not only should mid-elevation areas be conserved, but the entire gradient requires equal conservation attention

    Metabolically stable bradykinin B2 receptor agonists enhance transvascular drug delivery into malignant brain tumors by increasing drug half-life

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intravenous co-infusion of labradimil, a metabolically stable bradykinin B2 receptor agonist, has been shown to temporarily enhance the transvascular delivery of small chemotherapy drugs, such as carboplatin, across the blood-brain tumor barrier. It has been thought that the primary mechanism by which labradimil does so is by acting selectively on tumor microvasculature to increase the local transvascular flow rate across the blood-brain tumor barrier. This mechanism of action does not explain why, in the clinical setting, carboplatin dosing based on patient renal function over-estimates the carboplatin dose required for target carboplatin exposure. In this study we investigated the systemic actions of labradimil, as well as other bradykinin B2 receptor agonists with a range of metabolic stabilities, in context of the local actions of the respective B2 receptor agonists on the blood-brain tumor barrier of rodent malignant gliomas.</p> <p>Methods</p> <p>Using dynamic contrast-enhanced MRI, the pharmacokinetics of gadolinium-diethyltriaminepentaacetic acid (Gd-DTPA), a small MRI contrast agent, were imaged in rodents bearing orthotopic RG-2 malignant gliomas. Baseline blood and brain tumor tissue pharmacokinetics were imaged with the 1<sup>st </sup>bolus of Gd-DTPA over the first hour, and then re-imaged with a 2<sup>nd </sup>bolus of Gd-DTPA over the second hour, during which normal saline or a bradykinin B2 receptor agonist was infused intravenously for 15 minutes. Changes in mean arterial blood pressure were recorded. Imaging data was analyzed using both qualitative and quantitative methods.</p> <p>Results</p> <p>The decrease in systemic blood pressure correlated with the known metabolic stability of the bradykinin B2 receptor agonist infused. Metabolically stable bradykinin B2 agonists, methionine-lysine-bradykinin and labradimil, had differential effects on the transvascular flow rate of Gd-DTPA across the blood-brain tumor barrier. Both methionine-lysine-bradykinin and labradimil increased the blood half-life of Gd-DTPA sufficiently enough to increase significantly the tumor tissue Gd-DTPA area under the time-concentration curve.</p> <p>Conclusion</p> <p>Metabolically stable bradykinin B2 receptor agonists, methionine-lysine-bradykinin and labradimil, enhance the transvascular delivery of small chemotherapy drugs across the BBTB of malignant gliomas by increasing the blood half-life of the co-infused drug. The selectivity of the increase in drug delivery into the malignant glioma tissue, but not into normal brain tissue or skeletal muscle tissue, is due to the inherent porous nature of the BBTB of malignant glioma microvasculature.</p

    Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when food is unrestricted.

    Get PDF
    The decline in ocean water pH and changes in carbonate saturation states through anthropogenically mediated increases in atmospheric CO2 levels may pose a hazard to marine organisms. This may be particularly acute for those species reliant on calcareous structures like shells and exoskeletons. This is of particular concern in the case of valuable commercially exploited species such as the king scallop, Pecten maximus. In this study we investigated the effects on oxygen consumption, clearance rates and cellular turnover in juvenile P. maximus following 3 months laboratory exposure to four pCO2 treatments (290, 380, 750 and 1140 µatm). None of the exposure levels were found to have significant effect on the clearance rates, respiration rates, condition index or cellular turnover (RNA: DNA) of individuals. While it is clear that some life stages of marine bivalves appear susceptible to future levels of ocean acidification, particularly under food limiting conditions, the results from this study suggest that where food is in abundance, bivalves like juvenile P. maximus may display a tolerance to limited changes in seawater chemistry
    corecore