46 research outputs found

    Long Lasting Local and Systemic Inflammation after Cerebral Hypoxic ischemia in Newborn Mice

    Get PDF
    Background: Hypoxic ischemia (HI) is an important cause of neonatal brain injury and subsequent inflammation affects neurological outcome. In this study we performed investigations of systemic and local activation states of inflammatory cells from innate and adaptive immunity at different time points after neonatal HI brain injury in mice. Methodology/Principal Findings: We developed a multiplex flow cytometry based method combined with immunohistochemistry to investigate cellular immune responses in the brain 24 h to 7 months after HI brain injury. In addition, functional studies of ex vivo splenocytes after cerebral hypoxic ischemia were performed. Both central and peripheral activation of CD11b + and CD11c + antigen presenting cells were seen with expression of the costimulatory molecule CD86 and MHC-II, indicating active antigen presentation in the damaged hemisphere and in the spleen. After one week, naïve CD45rb + T-lymphocytes were demonstrated in the damaged brain hemisphere. In a second phase after three months, pronounced activation of CD45rb 2 T-lymphocytes expressing CD69 and CD25 was seen in the damaged hemisphere. Brain homogenate induced proliferation in splenocytes after HI but not in controls. Conclusions/Significance: Our findings demonstrate activation of both local and systemic immune responses months after hypoxic ischemic neonatal brain injury. The long term immune activation observed is of general importance for future studies of the inflammatory response after brain injury as most previous studies have focused on the first few weeks afte

    Hyperphosphorylation and Cleavage at D421 Enhance Tau Secretion

    Get PDF
    It is well established that tau pathology propagates in a predictable manner in Alzheimer’s disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD’s patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF

    Human-Specific Evolution and Adaptation Led to Major Qualitative Differences in the Variable Receptors of Human and Chimpanzee Natural Killer Cells

    Get PDF
    Natural killer (NK) cells serve essential functions in immunity and reproduction. Diversifying these functions within individuals and populations are rapidly-evolving interactions between highly polymorphic major histocompatibility complex (MHC) class I ligands and variable NK cell receptors. Specific to simian primates is the family of Killer cell Immunoglobulin-like Receptors (KIR), which recognize MHC class I and associate with a range of human diseases. Because KIR have considerable species-specificity and are lacking from common animal models, we performed extensive comparison of the systems of KIR and MHC class I interaction in humans and chimpanzees. Although of similar complexity, they differ in genomic organization, gene content, and diversification mechanisms, mainly because of human-specific specialization in the KIR that recognizes the C1 and C2 epitopes of MHC-B and -C. Humans uniquely focused KIR recognition on MHC-C, while losing C1-bearing MHC-B. Reversing this trend, C1-bearing HLA-B46 was recently driven to unprecedented high frequency in Southeast Asia. Chimpanzees have a variety of ancient, avid, and predominantly inhibitory receptors, whereas human receptors are fewer, recently evolved, and combine avid inhibitory receptors with attenuated activating receptors. These differences accompany human-specific evolution of the A and B haplotypes that are under balancing selection and differentially function in defense and reproduction. Our study shows how the qualitative differences that distinguish the human and chimpanzee systems of KIR and MHC class I predominantly derive from adaptations on the human line in response to selective pressures placed on human NK cells by the competing needs of defense and reproduction

    Evaluation of the brain-penetrant microtubule-stabilizing agent, dictyostatin, in the PS19 tau transgenic mouse model of tauopathy

    Get PDF
    Neurodegenerative disorders referred to as tauopathies, which includes Alzheimer's disease (AD), are characterized by insoluble deposits of the tau protein within neuron cell bodies and dendritic processes in the brain. Tau is normally associated with microtubules (MTs) in axons, where it provides MT stabilization and may modulate axonal transport. However, tau becomes hyperphosphorylated and dissociates from MTs in tauopathies, with evidence of reduced MT stability and defective axonal transport. This has led to the hypothesis that MT-stabilizing drugs may have potential for the treatment of tauopathies. Prior studies demonstrated that the brain-penetrant MT-stabilizing drug, epothilone D, had salutary effects in transgenic (Tg) mouse models of tauopathy, improving MT density and axonal transport, while reducing axonal dystrophy. Moreover, epothilone D enhanced cognitive performance and decreased hippocampal neuron loss, with evidence of reduced tau pathology. To date, epothilone D has been the only non-peptide small molecule MT-stabilizing agent to be evaluated in Tg tau mice. Herein, we demonstrate the efficacy of another small molecule brain-penetrant MT-stabilizing agent, dictyostatin, in the PS19 tau Tg mouse model. Although dictyostatin was poorly tolerated at once-weekly doses of 1 mg/kg or 0.3 mg/kg, likely due to gastrointestinal (GI) complications, a dictyostatin dose of 0.1 mg/kg was better tolerated, such that the majority of 6-month old PS19 mice, which harbor a moderate level of brain tau pathology, completed a 3-month dosing study without evidence of significant body weight loss. Importantly, as previously observed with epothilone D, the dictyostatin-treated PS19 mice displayed improved MT density and reduced axonal dystrophy, with a reduction of tau pathology and a trend toward increased hippocampal neuron survival relative to vehicle-treated PS19 mice. Thus, despite evidence of dose-limiting peripheral side effects, the observed positive brain outcomes in dictyostatin-treated aged PS19 mice reinforces the concept that MT-stabilizing compounds have significant potential for the treatment of tauopathies

    Genotype-Specific Differences between Mouse CNS Stem Cell Lines Expressing Frontotemporal Dementia Mutant or Wild Type Human Tau

    Get PDF
    Stem cell (SC) lines that capture the genetics of disease susceptibility provide new research tools. To assess the utility of mouse central nervous system (CNS) SC-containing neurosphere cultures for studying heritable neurodegenerative disease, we compared neurosphere cultures from transgenic mice that express human tau with the P301L familial frontotemporal dementia (FTD) mutation, rTg(tauP301L)4510, with those expressing comparable levels of wild type human tau, rTg(tauwt)21221. rTg(tauP301L)4510 mice express the human tauP301L variant in their forebrains and display cellular, histological, biochemical and behavioral abnormalities similar to those in human FTD, including age-dependent differences in tau phosphorylation that distinguish them from rTg(tauwt)21221 mice. We compared FTD-hallmark tau phosphorylation in neurospheres from rTg(tauP301L)4510 mice and from rTg(tauwt)21221 mice. The tau genotype-specific phosphorylation patterns in neurospheres mimicked those seen in mice, validating use of neurosphere cultures as models for studying tau phosphorylation. Genotype-specific tau phosphorylation was observed in 35 independent cell lines from individual fetuses; tau in rTg(tauP301L)4510 cultures was hypophosphorylated in comparison with rTg(tauwt)21221 as was seen in young adult mice. In addition, there were fewer human tau-expressing cells in rTg(tauP301L)4510 than in rTg(tauwt)21221 cultures. Following differentiation, neuronal filopodia-spine density was slightly greater in rTg(tauP301L)4510 than rTg(tauwt)21221 and control cultures. Together with the recapitulation of genotype-specific phosphorylation patterns, the observation that neurosphere lines maintained their cell line-specific-differences and retained SC characteristics over several passages supports the utility of SC cultures as surrogates for analysis of cellular disease mechanisms

    Child allowances and allocative decisions in Romanian households

    No full text
    In this paper it is tested whether increasing child allowances will affect the intra-household allocation of consumption, measured by child and adult goods, holding total household resources constant. The analysis is based on household survey data collected in Romania, where cash payments are made to families according to the number and age of children. Selectivity is controled for since there is the potential for self-selection bias in terms of the level of child allowances received. The findings suggest that holding total household resources constant, child allowances increase demand for child goods and calories and reduce demand for adult goods.
    corecore