37 research outputs found

    The human semicircular canal model of galvanic vestibular stimulation

    Get PDF
    A vector summation model of the action of galvanic stimuli on the semicircular canals has been shown to explain empirical balance and perceptual responses to binaural-bipolar stimuli. However, published data suggest binaural-monopolar stimuli evoke responses that are in the reverse direction of the model prediction. Here, we confirm this by measuring balance responses to binaural-monopolar stimulation as movements of the upper trunk. One explanation for the discrepancy is that the galvanic stimulus might evoke an oppositely directed balance response from the otolith organs that sums with and overrides the semicircular canal response. We tested this hypothesis by measuring sway responses across the full range of head pitch. The results showed some modulation of sway with pitch such that the maximal response occurred with the head in the primary position. However, the effect fell a long way short of that required to reverse the canal sway response. This indicates that the model is incomplete. Here, we examine alterations to the model that could explain both the bipolar and monopolar-evoked behavioural responses. An explanation was sought by remodelling the canal response with more recent data on the orientation of the individual canals. This improved matters but did not reverse the model prediction. However, the model response could be reversed by either rotating the entire labyrinth in the skull or by altering the gains of the individual canals. The most parsimonious solution was to use the more recent canal orientation data coupled with a small increase in posterior canal gain

    Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation

    Get PDF
    Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level

    Vestibular signal processing in a subject with somatosensory deafferentation: The case of sitting posture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The vestibular system of the inner ear provides information about head translation/rotation in space and about the orientation of the head with respect to the gravitoinertial vector. It also largely contributes to the control of posture through vestibulospinal pathways. Testing an individual severely deprived of somatosensory information below the nose, we investigated if equilibrium can be maintained while seated on the sole basis of this information.</p> <p>Results</p> <p>Although she was unstable, the deafferented subject (DS) was able to remain seated with the eyes closed in the absence of feet, arm and back supports. However, with the head unconsciously rotated towards the left or right shoulder, the DS's instability markedly increased. Small electrical stimulations of the vestibular apparatus produced large body tilts in the DS contrary to control subjects who did not show clear postural responses to the stimulations.</p> <p>Conclusion</p> <p>The results of the present experiment show that in the lack of vision and somatosensory information, vestibular signal processing allows the maintenance of an active sitting posture (i.e. without back or side rests). When head orientation changes with respect to the trunk, in the absence of vision, the lack of cervical information prevents the transformation of the head-centered vestibular information into a trunk-centered frame of reference of body motion. For the normal subjects, this latter frame of reference enables proper postural adjustments through vestibular signal processing, irrespectively of the orientation of the head with respect to the trunk.</p

    Cerebral, subcortical, and cerebellar activation evoked by selective stimulation of muscle and cutaneous afferents: an fMRI study.

    Full text link
    Abstract We compared the brain areas that showed significant flow changes induced by selective stimulation of muscle and cutaneous afferents using fMRI BOLD imaging. Afferents arising from the right hand were studied in eight volunteers with electrical stimulation of the digital nerve of the index finger and over the motor point of the FDI muscle. Both methods evoked areas of significant activation cortically, subcortically, and in the cerebellum. Selective muscle afferent stimulation caused significant activation in motor-related areas. It also caused significantly greater activation within the contralateral precentral gyrus, insula, and within the ipsilateral cerebellum as well as greater areas of reduced blood flow when compared to the cutaneous stimuli. We demonstrated separate precentral and postcentral foci of excitation with muscle afferent stimulation. We conclude, contrary to the findings with evoked potentials, that muscle afferents evoke more widespread cortical, subcortical, and cerebellar activation than do cutaneous afferents. This emphasizes the importance, for studies of movement, of matching the kinematic aspects in order to avoid the results being confounded by alterations in muscle afferent activation. The findings are consistent with clinical observations of the movement consequences of sensory loss and may also be the basis for the contribution of disturbed sensorimotor processing to disorders of movement

    Do you know where your arm is if you think your head has moved?

    No full text
    Reproduction of a previously presented elbow position is affected by changes in head position. As movement of the head is associated with local biomechanical changes, the aim of the present study was to determine if illusory changes in head position could induce similar effects on the reproduction of elbow position. Galvanic vestibular stimulation (GVS) was applied to healthy subjects in supine lying. The stimulus was applied during the presentation of an elbow position, which the subject then reproduced without stimulation. In the first study, 13 subjects received 1.5 mA stimuli, which caused postural sway in standing, confirming that the firing of vestibular afferents was affected, but no illusory changes in head position were reported. In the second study, 13 subjects received 2.0-3.0 mA GVS. Six out of 13 subjects reported consistent illusory changes in head position, away from the side of the anode. In these subjects, anode right stimulation induced illusory left lateral flexion and elbow joint position error towards extension (p=0.03), while anode left tended to have the opposite effect (p=0.16). The GVS had no effect on error in subjects who did not experience illusory head movement with either 1.5 mA stimulus (p=0.8) or 2.0-3.0 mA stimulus (p=0.7). This study demonstrates that the accuracy of elbow repositioning is affected by illusory changes in head position. These results support the hypothesis that the perceived position of proximal body segments is used in the planning and performance of accurate upper limb movements
    corecore