8 research outputs found

    Mechanistic, mechanistic-based empirical, and continuum-based concepts and models for the transport of polyelectrolyte-modified nanoscale zerovalent iron (NZVI) in saturated porous media

    No full text
    Controlled emplacement of polyelectrolyte-modified NZVI at a high particle concentration (1–10 g/L) is needed for effective in situ subsurface remediation. For this reason, a modeling tool capable of predicting polyelectrolyte-modified NZVI transport is imperative. However, the deep bed filtration theory is invalid for this purpose because several phenomena governing the transport of polyelectrolyte-modified NZVI in saturated porous media, including detachment, particle agglomeration, straining, and porous media ripening, violate the fundamental assumption of such a classical theory. Thus, this chapter critically reviews the literature of each phenomenon with various kinds of nanoparticles with a special focus on polyelectrolyte-modified NZVI. Then, each phenomenon is elaborated using three kinds of mathematical models, including mechanistic (such as extended DLVO theory), mechanistic-based empirical (correlations to predict NZVI agglomeration and deposition), and continuum-based (Eulerian continuum-based models). These proposed modeling tools can be applied at various scales from column experiments (1-D) to field-scaled operations (3-D) for designing NZVI injection and emplacement in the subsurface

    Connectedness as a Core Conservation Concern: An Interdisciplinary Review of Theory and a Call for Practice

    No full text

    Bibliography: longevity, ageing and parental age effects in Drosophila (1907–86)

    No full text

    Klinische Aspekte der EKT — Anwendungsrichtlinien und -empfehlungen

    No full text
    corecore