40 research outputs found

    Risk factors for acquisition of hepatitis C virus infection: a case series and potential implications for disease surveillance

    Get PDF
    BACKGROUND: Transmission of hepatitis C vims (HCV) is strongly associated with use of contaminated blood products and injection drugs. Other "non-parental" modes of transmission including sexual activity have been increasingly recognized. We examined risk factors for acquiring HCV in patients who were referred to two tertiary care centers and enrolled in an antiviral therapy protocol. METHODS: Interviews of 148 patients were conducted apart from their physician evaluation using a structured questionnaire covering demographics and risk factors for HCV acquisition. RESULTS: Risk factors (blood products, injection/intranasal drugs, razor blades/ toothbrushes, body/ear piercing, occupational exposure, sexual activity) were identified in 141 (95.3%) of participants; 23 (15.5%) had one (most frequently blood or drug exposure), 41 (27.7%) had two, and 84 (53.4%) had more than two risk factors. No patient reported sexual activity as a sole risk factor. Body piercing accounted for a high number of exposures in women. Men were more likely to have exposure to street drugs but less exposure to blood products than women. Blood product exposure was less common in younger than older HCV patients. CONCLUSION: One and often multiple risk factors could be identified in nearly all HCV-infected patients seen in a referral practice. None named sexual transmission as the sole risk factor. The development of a more complete profile of factors contributing to transmission of HCV infection may assist in clinical and preventive efforts. The recognition of the potential presence of multiple risk factors may have important implications in the approach to HCV surveillance, and particularly the use of hierarchical algorithms in the study of risk factors

    Facilitating Joint Chaos and Fractal Analysis of Biosignals through Nonlinear Adaptive Filtering

    Get PDF
    Background: Chaos and random fractal theories are among the most important for fully characterizing nonlinear dynamics of complicated multiscale biosignals. Chaos analysis requires that signals be relatively noise-free and stationary, while fractal analysis demands signals to be non-rhythmic and scale-free. Methodology/Principal Findings: To facilitate joint chaos and fractal analysis of biosignals, we present an adaptive algorithm, which: (1) can readily remove nonstationarities from the signal, (2) can more effectively reduce noise in the signals than linear filters, wavelet denoising, and chaos-based noise reduction techniques; (3) can readily decompose a multiscale biosignal into a series of intrinsically bandlimited functions; and (4) offers a new formulation of fractal and multifractal analysis that is better than existing methods when a biosignal contains a strong oscillatory component. Conclusions: The presented approach is a valuable, versatile tool for the analysis of various types of biological signals. Its effectiveness is demonstrated by offering new important insights into brainwave dynamics and the very high accuracy in automatically detecting epileptic seizures from EEG signals

    Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells

    Get PDF
    RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by ribonuclease inhibitor (RI) presented in the cytoplasm of mammalian cells.In search of new effective anticancer RNases we studied the effects of barnase, a ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC(50)) ranging from 0.2 to 13 microM and to leukemia cell lines with IC(50) values ranging from 2.4 to 82 microM. Also, we characterized the cytotoxic effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the single-chain variable fragment (scFv) of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC(50) = 1.8 nM) was three orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3 cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidylserine on the outer leaflet of the plasma membrane, and the activation of caspase-3.These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells
    corecore