55 research outputs found
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
Stroke genetics informs drug discovery and risk prediction across ancestries
Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries
Post-stroke epilepsy in young adults: a long-term follow-up study
Contains fulltext :
117449.pdf (publisher's version ) (Open Access)BACKGROUND: Little is known about the incidence and risk of seizures after stroke in young adults. Especially in the young seizures might dramatically influence prognosis and quality of life. We therefore investigated the long-term incidence and risk of post-stroke epilepsy in young adults with a transient ischemic attack (TIA), ischemic stroke (IS) or intracerebral hemorrhage (ICH). METHODS AND FINDINGS: We performed a prospective cohort study among 697 consecutive patients with a first-ever TIA, IS or ICH, aged 18-50 years, admitted to our hospital between 1-1-1980 till 1-11-2010. The occurrence of epilepsy was assessed by standardized questionnaires and verified by a neurologist. Cumulative risks were estimated with Kaplan-Meier analysis. Cox proportional hazard models were used to calculate relative risks. After mean follow-up of 9.1 years (SD 8.2), 79 (11.3%) patients developed post-stroke epilepsy and 39 patients (5.6%) developed epilepsy with recurrent seizures. Patients with an initial late seizure more often developed recurrent seizures than patients with an initial early seizure. Cumulative risk of epilepsy was 31%, 16% and 5% for patients with an ICH, IS and TIA respectively (Logrank test ICH and IS versus TIA p<0.001). Cumulative risk of epilepsy with recurrent seizures was 23%, 8% and 4% respectively (Logrank ICH versus IS p = 0.05, ICH versus TIA p<0.001, IS versus TIA p = 0.01). In addition a high NIHSS was a significant predictor of both epilepsy and epilepsy with recurrent seizures (HR 1.07, 95% CI 1.03-1.11 and 1.08, 95% CI 1.02-1.14). CONCLUSIONS: Post-stroke epilepsy is much more common than previously thought. Especially patients with an ICH and a high NIHSS are at high risk. This calls upon the question whether a subgroup could be identified which benefits from the use of prophylactic antiepileptic medication. Future studies should be executed to investigate risk factors and the effect of post-stroke epilepsy on quality of life
- …