11 research outputs found

    Robust photoregulation of GABAA receptors by allosteric modulation with a propofol analogue

    No full text
    Photochemical switches represent a powerful method for improving pharmacological therapies and controlling cellular physiology. Here we report the photo-regulation of GABA(A) receptors (GABA(A)Rs) by a derivative of propofol (2,6-diisopropylphenol), a GABA(A)R allosteric modulator, that we have modified to contain photo-isomerizable azobenzene. Using α(1)β(2)γ(2) GABA(A)Rs expressed in Xenopus laevis oocytes and native GABA(A)Rs of isolated retinal ganglion cells, we show that the trans-azobenzene isomer of the new compound (trans-MPC088), generated by visible light (wavelengths ~440 nm), potentiates the GABA-elicited response and at higher concentrations directly activates the receptors. cis-MPC088, generated from trans-MPC088 by UV light (~365 nm), produces little if any receptor potentiation/activation. In cerebellar slices, MPC088 co-applied with GABA affords bidirectional photo-modulation of Purkinje cell membrane current and spike-firing rate. The findings demonstrate photo-control of GABA(A)Rs by an allosteric ligand and open new avenues for fundamental and clinically oriented research on GABA(A)Rs, a major class of neurotransmitter receptors in the central nervous system

    Synthesis of Flavonoids

    No full text

    Chemistry of Food Colour

    No full text

    The role of GABAA receptors in the acute and chronic effects of ethanol: a decade of progress

    No full text
    The past decade has brought many advances in our understanding of GABA(A) receptor-mediated ethanol action in the central nervous system. We now know that specific GABA(A) receptor subtypes are sensitive to ethanol at doses attained during social drinking while other subtypes respond to ethanol at doses attained by severe intoxication. Furthermore, ethanol increases GABAergic neurotransmission through indirect effects, including the elevation of endogenous GABAergic neuroactive steroids, presynaptic release of GABA, and dephosphorylation of GABA(A) receptors promoting increases in GABA sensitivity. Ethanol’s effects on intracellular signaling also influence GABAergic transmission in multiple ways that vary across brain regions and cell types. The effects of chronic ethanol administration are influenced by adaptations in GABA(A) receptor function, expression, trafficking, and subcellular localization that contribute to ethanol tolerance, dependence, and withdrawal hyperexcitability. Adolescents exhibit altered sensitivity to ethanol actions, the tendency for higher drinking and longer lasting GABAergic adaptations to chronic ethanol administration. The elucidation of the mechanisms that underlie adaptations to ethanol exposure are leading to a better understanding of the regulation of inhibitory transmission and new targets for therapies to support recovery from ethanol withdrawal and alcoholism

    GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition

    No full text

    The Ubiquitin System in Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common form of dementia, most prevalent in the elderly population and has a significant impact on individuals and their family as well as the health care system and the economy. While the number of patients affected by various forms of dementia including AD is on the increase, there is currently no cure. Although genome-wide association studies have identified genetic markers for familial AD, the molecular mechanisms underlying the initiation and development of both familial and sporadic AD remain poorly understood. Most neurodegenerative diseases and in particular those associated with dementia have been defined as proteinopathies due to the presence of intra- and/or extracellular protein aggregates in the brain of affected individuals. Although loss of proteostasis in AD has been known for decades, it is only in recent years that we have come to appreciate the role of ubiquitin-dependent mechanisms in brain homeostasis and in brain diseases. Ubiquitin is a highly versatile post-translational modification which regulates many aspects of protein fate and function, including protein degradation by the Ubiquitin–Proteasome System (UPS), autophagy-mediated removal of damaged organelles and proteins, lysosomal turnover of membrane proteins and of extracellular molecules brought inside the cell through endocytosis. Amyloid-β (Aβ) fragments as well as hyperphosphorylation of Tau are hallmarks of AD, and these are found in extracellular plaques and intracellular fibrils in the brain of individuals with AD, respectively. Yet, whether it is the oligomeric or the soluble species of Aβ and Tau that mediate toxicity is still unclear. These proteins impact on mitochondrial energy metabolism, inflammation, as well as a number of housekeeping processes including protein degradation through the UPS and autophagy. In this chapter, we will discuss the role of ubiquitin in neuronal homeostasis as well as in AD; summarise crosstalks between the enzymes that regulate protein ubiquitination and the toxic proteins Tau and Aβ; highlight emerging molecular mechanisms in AD as well as future strategies which aim to exploit the ubiquitin system as a source for next-generation therapeutics.<br/
    corecore