58 research outputs found
Interstellar scintillation as the origin of rapid radio variability in the quasar J1819+3845
Quasars shine brightly due to the liberation of gravitational energy as matter falls onto a supermassive black hole in the centre of a galaxy. Variations in the radiation received from active galactic nuclei (AGN) are studied at all wavelengths, revealing the tiny dimensions of the region and the processes of fuelling the black hole. Some AGN are variable at optical and shorter wavelengths, and display radio outbursts over years and decades. These AGN often also show faster variations at radio wavelengths (intraday variability, IDV) which have been the subject of much debate. The simplest explanation, supported by a correlation in some sources between the optical (intrinsic) and faster radio variations, is that the rapid radio variations are intrinsic. However, this explanation implies physically difficult brightness temperatures, suggesting that the variations may be due to scattering of the incident radiation in the interstellar medium of our Galaxy. Here we present results which show unambiguously that the variations in one extreme case are due to interstellar scintillation. We also measure the transverse velocity of the scattering material, revealing a surprising high velocity plasma close to the Solar System
The presence of interstellar scintillation in the 15 GHz interday variability of 1158 OVRO-monitored blazars
We have conducted the first systematic search for interday variability in a large sample of extragalactic radio sources at 15 GHz. From the sample of 1158 radio-selected blazars monitored over an similar to 10 yr span by the Owens Valley Radio Observatory 40-m telescope, we identified 20 sources exhibiting significant flux density variations on 4-d time-scales. The sky distribution of the variable sources is strongly dependent on the line-of-sight Galactic H alpha intensities from the Wisconsin H alpha Mapper Survey, demonstrating the contribution of interstellar scintillation (ISS) to their interday variability. 21 per cent of sources observed through sightlines with H alpha intensities larger than 10 rayleighs exhibit significant ISS persistent over the similar to 10 yr period. The fraction of scintillators is potentially larger when considering less significant variables missed by our selection criteria, due to ISS intermittency. This study demonstrates that ISS is still important at 15 GHz, particularly through strongly scattered sightlines of the Galaxy. Of the 20 most significant variables, 11 are observed through the Orion-Eridanus superbubble, photoionized by hot stars of the Orion OB1 association. The high-energy neutrino source TXS 0506+056 is observed through this region, so ISS must be considered in any interpretation of its short-term radio variability. J0616-1041 appears to exhibit large similar to 20 per cent interday flux density variations, comparable in magnitude to that of the very rare class of extreme, intrahour scintillators that includes PKS0405-385, J1819+3845, and PKS1257-326; this needs to be confirmed by higher cadence follow-up observations
Radio Observations of X-ray Sources
Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe
Manifestations of a Massive Black Hole in the Galactic Center
A young star cluster is a less contrived explanation than a massive black hole for many of the features seen in the Galactic center. However from a Copernican point of view, this explanation is less attractive than a black hole. The evidence for a ~ 10^6 M_⊙ black hole is becoming progressively less convincing, but the case against it is no stronger. We describe the development of a singular star cluster, as well as the processes of stellar disruption, merging, and gas accretion in such a cluster. Recently merged stars and tidally stripped giants may be detectable within an arcminute of the Galactic Center. We examine the physics of star formation in the inner parsecs of the galaxy, and the problem of maintaining the two parsec molecular torus
Circular polarization in scintillating sources
We discuss the detection of variable circular. polarization (CP) in several scintillating radio sources: PKS 1519-273, PKS 0405-385 and Sgr A*. The CP in PKS 1519-273 is strong, and varies on a timescale of hours to days at frequencies between 1.4 and 8.6 GHz. We argue that the variability is due to scintillation of a compact (15 - 35 muas) component of the source with -3.8 +/- 0.4% circular polarization at 4.8 GHz. We find that no simple model can account for the magnitude and spectrum of the circular polarization in this source. We also interpret the variable CP observed in PKS 0405-385 in terms of scintillation, although the behaviour of the CP is more complicated, and changes character between scintillation epochs. We also discuss CP in Sgr A*, which is found to be variable at 2.5 and 1.4 GHz on a timescale similar to 7 days. The fractional degree of variability in circular polarization greatly exceeds that in total intensity in all three sources
- …