29 research outputs found

    Chordin Is a Modifier of Tbx1 for the Craniofacial Malformations of 22q11 Deletion Syndrome Phenotypes in Mouse

    Get PDF
    Point mutations in TBX1 can recapitulate many of the structural defects of 22q11 deletion syndromes (22q11DS), usually associated with a chromosomal deletion at 22q1.2. 22q11DS often includes specific cardiac and pharyngeal organ anomalies, but the presence of characteristic craniofacial defects is highly variable. Even among family members with a single TBX1 point mutation but no cytological deletion, cleft palate and low-set ears may or may not be present. In theory, such differences could depend on an unidentified, second-site lesion that modifies the craniofacial consequences of TBX1 deficiency. We present evidence for such a locus in a mouse model. Null mutations of chordin have been reported to cause severe defects recapitulating 22q11DS, which we show are highly dependent on genetic background. In an inbred strain in which chordin−/− is fully penetrant, we found a closely linked, strong modifier—a mutation in a Tbx1 intron causing severe splicing defects. Without it, lack of chordin results in a low penetrance of mandibular hypoplasia but no cardiac or thoracic organ malformations. This hypomorphic Tbx1 allele per se results in defects resembling 22q11DS but with a low penetrance of hallmark craniofacial malformations, unless chordin is mutant. Thus, chordin is a modifier for the craniofacial anomalies of Tbx1 mutations, demonstrating the existence of a second-site modifier for a specific subset of the phenotypes associated with 22q11DS

    Endothelial Neuropilin Disruption in Mice Causes DiGeorge Syndrome-Like Malformations via Mechanisms Distinct to Those Caused by Loss of Tbx1

    Get PDF
    The spectrum of human congenital malformations known as DiGeorge syndrome (DGS) is replicated in mice by mutation of Tbx1. Vegfa has been proposed as a modifier of DGS, based in part on the occurrence of comparable phenotypes in Tbx1 and Vegfa mutant mice. Many additional genes have been shown to cause DGS-like phenotypes in mice when mutated; these generally intersect in some manner with Tbx1, and therefore impact the same developmental processes in which Tbx1 itself is involved. In this study, using Tie2Cre, we show that endothelial-specific mutation of the gene encoding the VEGFA coreceptor neuropilin-1 (Nrp1) also replicates the most prominent terminal phenotypes that typify DGS. However, the developmental etiologies of these defects are fundamentally different from those caused by absence of TBX1. In Tie2Cre/Nrp1 mutants, initial pharyngeal organization is normal but subsequent pharyngeal organ growth is impaired, second heart field differentiation is normal but cardiac outflow tract cushion organization is distorted, neural crest cell migration is normal, and palatal mesenchyme proliferation is impaired with no change in apoptosis. Our results demonstrate that impairment of VEGF-dependent endothelial pathways leads to a spectrum of DiGeorge syndrome-type malformations, through processes that are distinguishable from those controlled by Tbx1

    A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date.</p> <p>Methods</p> <p>We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents.</p> <p>Results</p> <p>Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial <it>de novo </it>1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping.</p> <p>Conclusion</p> <p>The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.</p

    Crk and CrkL adaptor proteins: networks for physiological and pathological signaling

    Get PDF
    The Crk adaptor proteins (Crk and CrkL) constitute an integral part of a network of essential signal transduction pathways in humans and other organisms that act as major convergence points in tyrosine kinase signaling. Crk proteins integrate signals from a wide variety of sources, including growth factors, extracellular matrix molecules, bacterial pathogens, and apoptotic cells. Mounting evidence indicates that dysregulation of Crk proteins is associated with human diseases, including cancer and susceptibility to pathogen infections. Recent structural work has identified new and unusual insights into the regulation of Crk proteins, providing a rationale for how Crk can sense diverse signals and produce a myriad of biological responses

    Of mice and men: molecular genetics of congenital heart disease

    Get PDF
    corecore