826 research outputs found

    Systematic review of the efficacy and safety of biological therapy for inflammatory conditions in HIV-infected individuals

    Get PDF
    Biologic therapies are injectable immunomodulatory agents directed against specific immune cell or chemical targets. They have transformed the lives of HIV-uninfected individuals with severe inflammatory conditions including psoriasis, rheumatoid arthritis, and ulcerative colitis. The perceived increased infection risk associated with these agents means that HIV-infected individuals have not been included in randomised control trials of these drugs. The literature for use of biologic therapies in HIV-infected populations is limited to case reports and case series. There are additional data on use of rituximab, a monoclonal antibody against B lymphocytes, in the setting of HIV-associated haematological malignancy. We performed a systematic review of efficacy and safety of biologic therapy for inflammatory conditions in HIV-infected individuals. Our systematic review identified 37 treatment episodes with six different biologic agents encompassing 10 different inflammatory conditions. Broadly, efficacy of the agents studied was comparable to reports from HIV-uninfected patients. Both infectious and non-infectious sequelae were also comparable with trial data from HIV-uninfected patients. HIV control, even for the minority of individuals not receiving anti-retroviral therapy (ART) at the time of biologic therapy, was not adversely affected. However, detail was limited concerning ART regimens and both immunological and virological parameters of follow-up. Overall available literature is of very low quality and likely subject to publication bias of successful cases. Firm conclusions are not possible regarding the efficacy and safety of biologic agents in HIV-infected individuals; however, there appear to be sufficient data to warrant inclusion of individuals with well-controlled HIV in future trial studies

    ROX Index to Guide Management of COVID-19 Pneumonia

    Get PDF
    Coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from China in December 2019 leading to a global pandemic (1). Approximately 17% of patients admitted to hospital require critical care, the majority of whom undergo mechanical ventilation (MV) for pneumonia complicated by hypoxaemia (2)

    <i>Trypanosoma brucei rhodesiense</i> transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis

    Get PDF
    Sleeping sickness is caused by a species of trypanosome blood parasite that is transmitted by tsetse flies. To understand better how infection with this parasite leads to disease, we provide here the most detailed description yet of the course of infection and disease onset in vervet monkeys. One infected tsetse fly was allowed to feed on each host individual, and in all cases infections were successful. The characteristics of infection and disease were similar in all hosts, but the rate of progression varied considerably. Parasites were first detected in the blood 4-10 days after infection, showing that migration of parasites from the site of fly bite was very rapid. Anaemia was a key feature of disease, with a reduction in the numbers and average size of red blood cells and associated decline in numbers of platelets and white blood cells. One to six weeks after infection, parasites were observed in the cerebrospinal fluid (CSF), indicating that they had moved from the blood into the brain; this was associated with a white cell infiltration. This study shows that fly-transmitted infection in vervets accurately mimics human disease and provides a robust model to understand better how sleeping sickness develops

    Electron transport through 8-oxoG: NEGF/DFT study

    Get PDF
    We present a first-principles study of the conductance of Guanine and 8-Oxoguanine (8-oxoG) attached to Au(111) electrodes. Cellular levels of 8-oxoG have been found in larger concentrations in cancer patients. The current through the structure was calculated using a DFT–NEGF formalism. We have compared flat and pyramidal electrode geometries and show that there is a measurable difference between the I–V characteristics of the pristine molecule and the 8-oxoG. For a flat electrode geometry, 8-oxoG produces a 2.57 (18.3) times increase in current than the corresponding counterpart at 3 V with a bond separation of 1.2 Å (2.4 Å). This can be attributed to molecular orbital energies shifting at the junction. Overall the flat geometry produces larger currents. We have also investigated the sensitivity of the current to the electrode molecule separation. For the flat geometry, the current dropped approximately 80% (97%) for 8-oxoG (pristine Guanine) with the doubling of the electrode separation

    Word add-in for ontology recognition: semantic enrichment of scientific literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the current era of scientific research, efficient communication of information is paramount. As such, the nature of scholarly and scientific communication is changing; cyberinfrastructure is now absolutely necessary and new media are allowing information and knowledge to be more interactive and immediate. One approach to making knowledge more accessible is the addition of machine-readable semantic data to scholarly articles.</p> <p>Results</p> <p>The Word add-in presented here will assist authors in this effort by automatically recognizing and highlighting words or phrases that are likely information-rich, allowing authors to associate semantic data with those words or phrases, and to embed that data in the document as XML. The add-in and source code are publicly available at <url>http://www.codeplex.com/UCSDBioLit</url>.</p> <p>Conclusions</p> <p>The Word add-in for ontology term recognition makes it possible for an author to add semantic data to a document as it is being written and it encodes these data using XML tags that are effectively a standard in life sciences literature. Allowing authors to mark-up their own work will help increase the amount and quality of machine-readable literature metadata.</p

    Development and internal validation of a diagnostic prediction model for COVID-19 at time of admission to hospital.

    Get PDF
    BACKGROUND: Early coronavirus disease 2019 (COVID-19) diagnosis prior to laboratory testing results is crucial for infection control in hospitals. Models exist predicting COVID-19 diagnosis, but significant concerns exist regarding methodology and generalizability. AIM: To generate the first COVID-19 diagnosis risk score for use at the time of hospital admission using the TRIPOD (transparent reporting of a multivariable prediction model for individual prognosis or diagnosis) checklist. DESIGN: A multivariable diagnostic prediction model for COVID-19 using the TRIPOD checklist applied to a large single-centre retrospective observational study of patients with suspected COVID-19. METHODS: 581 individuals were admitted with suspected COVID-19; the majority had laboratory-confirmed COVID-19 (420/581, 72.2%). Retrospective collection was performed of electronic clinical records and pathology data. RESULTS: The final multivariable model demonstrated AUC 0.8535 (95% confidence interval 0.8121-0.8950). The final model used six clinical variables that are routinely available in most low and high-resource settings. Using a cut-off of 2, the derived risk score has a sensitivity of 78.1% and specificity of 86.8%. At COVID-19 prevalence of 10% the model has a negative predictive value (NPV) of 96.5%. CONCLUSIONS: Our risk score is intended for diagnosis of COVID-19 in individuals admitted to hospital with suspected COVID-19. The score is the first developed for COVID-19 diagnosis using the TRIPOD checklist. It may be effective as a tool to rule out COVID-19 and function at different pandemic phases of variable COVID-19 prevalence. The simple score could be used by any healthcare worker to support hospital infection control prior to laboratory testing results

    Arthroscopic observation was useful to detect loosening of the femoral component of unicompartmental knee arthroplasty in a recurrent hemoarthrosis

    Get PDF
    A case of recurrent hemarthrosis of the knee after a mobile-bearing unicompartmental knee arthroplasty (UKA; Oxford UKA) is described. A 58-year-old man met with a road traffic accident 10 months after UKA. He developed anteromedial pain and hemarthrosis of the knee joint 1 month after the accident, which required multiple aspirations. Physical examination showed no instability. Plain radiograph revealed no signs of loosening. All laboratory data, including bleeding and coagulation times, were within normal limits. Diagnostic arthroscopy demonstrated loosening of the femoral component. Any intraarticular pathology other than nonspecific synovitis was ruled out. The loose femoral component and polyethylene meniscal bearing were revised. Since then, hemarthrosis has not recurred
    • …
    corecore