27 research outputs found

    Religious Tastes and Styles as Markers of Class Belonging: A Bourdieuian Perspective on Pentecostalism in South America

    Get PDF
    Studies on the relationship between social class and religion tend to highlight the demographic dimension of class, but neglect its symbolic dimension. By addressing the symbolic dimensions through a Bourdieuian approach, this article contends that religious tastes and styles can be employed as class markers within the sphere of religion. A case study on Argentinean Pentecostalism and in-depth analysis of a lower and middle class church illustrate how symbolic class differences are cultivated in the form of distinctive religious styles. While the lower class church displays a style marked by emotional expressiveness and the search for life improvement through spiritual practices, the middle class church performs a sober and calm style of Pentecostalism. The study highlights the role of styles in the reproduction of class boundaries, while shedding a critical light on the importance of tastes

    Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography

    Get PDF
    The largest oceanic heat input to the Arctic Ocean results from inflowing Atlantic water. This inflowing water is warmer than it has been in the past 2,000 years1, 2. Yet the fate of this heat remains uncertain3, partly because the water is relatively saline, and thus dense: it therefore enters the Arctic Ocean at intermediate depths and is separated from surface waters by stratification. Vertical mixing is generally weak within the Arctic Ocean basins, with very modest heat fluxes (0.05–0.3 W m?2) arising largely from double diffusion4, 5, 6, 7, 8. However, geographically limited observations have indicated substantially enhanced turbulent mixing rates over rough topography9, 10, 11, 12, 13, 14. Here we present pan-Arctic microstructure measurements of turbulent kinetic energy dissipation. Our measurements further demonstrate that the enhanced continental slope dissipation rate, and by implication vertical mixing, varies significantly with both topographic steepness and longitude. Furthermore, our observations show that dissipation is insensitive to sea-ice conditions. We identify tides as the main energy source that supports the enhanced dissipation, which generates vertical heat fluxes of more than 50 W m?2. We suggest that the increased transfer of momentum from the atmosphere to the ocean as Arctic sea ice declines is likely to lead to an expansion of mixing hotspots in the future Arctic Ocean
    corecore