186 research outputs found

    Impaired decisional impulsivity in pathological videogamers

    Get PDF
    Abstract Background Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort. Methods Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment. Results In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time. Conclusions We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management

    Electrophysiological evidence for an early processing of human voices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous electrophysiological studies have identified a "voice specific response" (VSR) peaking around 320 ms after stimulus onset, a latency markedly longer than the 70 ms needed to discriminate living from non-living sound sources and the 150 ms to 200 ms needed for the processing of voice paralinguistic qualities. In the present study, we investigated whether an early electrophysiological difference between voice and non-voice stimuli could be observed.</p> <p>Results</p> <p>ERPs were recorded from 32 healthy volunteers who listened to 200 ms long stimuli from three sound categories - voices, bird songs and environmental sounds - whilst performing a pure-tone detection task. ERP analyses revealed voice/non-voice amplitude differences emerging as early as 164 ms post stimulus onset and peaking around 200 ms on fronto-temporal (positivity) and occipital (negativity) electrodes.</p> <p>Conclusion</p> <p>Our electrophysiological results suggest a rapid brain discrimination of sounds of voice, termed the "fronto-temporal positivity to voices" (FTPV), at latencies comparable to the well-known face-preferential N170.</p

    Subclinical Hypothyroidism after Radioiodine Exposure: Ukrainian–American Cohort Study of Thyroid Cancer and Other Thyroid Diseases after the Chornobyl Accident (1998–2000)

    Get PDF
    BackgroundHypothyroidism is the most common thyroid abnormality in patients treated with high doses of iodine-131 (131I). Data on risk of hypothyroidism from low to moderate 131I thyroid doses are limited and inconsistent.ObjectiveThis study was conducted to quantify the risk of hypothyroidism prevalence in relation to 131I doses received because of the Chornobyl accident.MethodsThis is a cross-sectional (1998-2000) screening study of thyroid diseases in a cohort of 11,853 individuals &lt; 18 years of age at the time of the accident, with individual thyroid radioactivity measurements taken within 2 months of the accident. We measured thyroid-stimulating hormone (TSH), free thyroxine, and antibodies to thyroid peroxidase (ATPO) in serum.ResultsMean age at examination of the analysis cohort was 21.6 years (range, 12.2-32.5 years), with 49% females. Mean 131I thyroid dose was 0.79 Gy (range, 0-40.7 Gy). There were 719 cases with hypothyroidism (TSH &gt; 4 mIU/L), including 14 with overt hypothyroidism. We found a significant, small association between (131)I thyroid doses and prevalent hypothyroidism, with the excess odds ratio (EOR) per gray of 0.10 (95% confidence interval, 0.03-0.21). EOR per gray was higher in individuals with ATPO &lt; or = 60 U/mL compared with individuals with ATPO &gt; 60 U/mL (p &lt; 0.001).ConclusionsThis is the first study to find a significant relationship between prevalence of hypothyroidism and individual (131)I thyroid doses due to environmental exposure. The radiation increase in hypothyroidism was small (10% per Gy) and limited largely to subclinical hypothyroidism. Prospective data are needed to evaluate the dynamics of radiation-related hypothyroidism and clarify the role of antithyroid antibodies

    Sustained axon regeneration induced by co-deletion of PTEN and SOCS3

    Get PDF
    A formidable challenge in neural repair in the adult central nervous system (CNS) is the long distances that regenerating axons often need to travel in order to reconnect with their targets. Thus, a sustained capacity for axon regeneration is critical for achieving functional restoration. Although deletion of either phosphatase and tensin homologue (PTEN), a negative regulator of mammalian target of rapamycin (mTOR), or suppressor of cytokine signalling 3 (SOCS3), a negative regulator of Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, in adult retinal ganglion cells (RGCs) individually promoted significant optic nerve regeneration, such regrowth tapered off around 2 weeks after the crush injury. Here we show that, remarkably, simultaneous deletion of both PTEN and SOCS3 enables robust and sustained axon regeneration. We further show that PTEN and SOCS3 regulate two independent pathways that act synergistically to promote enhanced axon regeneration. Gene expression analyses suggest that double deletion not only results in the induction of many growth-related genes, but also allows RGCs to maintain the expression of a repertoire of genes at the physiological level after injury. Our results reveal concurrent activation of mTOR and STAT3 pathways as key for sustaining long-distance axon regeneration in adult CNS, a crucial step towards functional recovery

    Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    Get PDF
    Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy.We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing.Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production

    Identification of Novel Ξ±-Synuclein Isoforms in Human Brain Tissue by using an Online NanoLC-ESI-FTICR-MS Method

    Get PDF
    Parkinson’s disease (PD) and Dementia with Lewy bodies (DLB) are neurodegenerative diseases that are characterized by intra-neuronal inclusions of Lewy bodies in distinct brain regions. These inclusions consist mainly of aggregated Ξ±-synuclein (Ξ±-syn) protein. The present study used immunoprecipitation combined with nanoflow liquid chromatography (LC) coupled to high resolution electrospray ionization Fourier transform ion cyclotron resonance tandem mass spectrometry (ESI-FTICR-MS/MS) to determine known and novel isoforms of Ξ±-syn in brain tissue homogenates. N-terminally acetylated full-length Ξ±-syn (Ac-Ξ±-syn1–140) and two N-terminally acetylated C-terminally truncated forms of Ξ±-syn (Ac-Ξ±-syn1–139 and Ac-Ξ±-syn1–103) were found. The different forms of Ξ±-syn were further studied by Western blotting in brain tissue homogenates from the temporal cortex Brodmann area 36 (BA36) and the dorsolateral prefrontal cortex BA9 derived from controls, patients with DLB and PD with dementia (PDD). Quantification of Ξ±-syn in each brain tissue fraction was performed using a novel enzyme-linked immunosorbent assay (ELISA)

    Molecular psychiatry of zebrafish

    Get PDF
    Due to their well-characterized neural development and high genetic homology to mammals, zebrafish (Danio rerio) have emerged as a powerful model organism in the field of biological psychiatry. Here, we discuss the molecular psychiatry of zebrafish, and its implications for translational neuroscience research and modeling central nervous system (CNS) disorders. In particular, we outline recent genetic and technological developments allowing for in vivo examinations, high-throughput screening and whole-brain analyses in larval and adult zebrafish. We also summarize the application of these molecular techniques to the understanding of neuropsychiatric disease, outlining the potential of zebrafish for modeling complex brain disorders, including attention-deficit/hyperactivity disorder (ADHD), aggression, post-traumatic stress and substance abuse. Critically evaluating the advantages and limitations of larval and adult fish tests, we suggest that zebrafish models become a rapidly emerging new field in modern molecular psychiatry research
    • …
    corecore