102 research outputs found

    Structure of S. aureus HPPK and the Discovery of a New Substrate Site Inhibitor

    Get PDF
    The first structural and biophysical data on the folate biosynthesis pathway enzyme and drug target, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), from the pathogen Staphylococcus aureus is presented. HPPK is the second essential enzyme in the pathway catalysing the pyrophosphoryl transfer from cofactor (ATP) to the substrate (6-hydroxymethyl-7,8-dihydropterin, HMDP). In-silico screening identified 8-mercaptoguanine which was shown to bind with an equilibrium dissociation constant, Kd, of ∼13 µM as measured by isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR). An IC50 of ∼41 µM was determined by means of a luminescent kinase assay. In contrast to the biological substrate, the inhibitor has no requirement for magnesium or the ATP cofactor for competitive binding to the substrate site. The 1.65 Å resolution crystal structure of the inhibited complex showed that it binds in the pterin site and shares many of the key intermolecular interactions of the substrate. Chemical shift and 15N heteronuclear NMR measurements reveal that the fast motion of the pterin-binding loop (L2) is partially dampened in the SaHPPK/HMDP/α,β-methylene adenosine 5′-triphosphate (AMPCPP) ternary complex, but the ATP loop (L3) remains mobile on the µs-ms timescale. In contrast, for the SaHPPK/8-mercaptoguanine/AMPCPP ternary complex, the loop L2 becomes rigid on the fast timescale and the L3 loop also becomes more ordered – an observation that correlates with the large entropic penalty associated with inhibitor binding as revealed by ITC. NMR data, including 15N-1H residual dipolar coupling measurements, indicate that the sulfur atom in the inhibitor is important for stabilizing and restricting important motions of the L2 and L3 catalytic loops in the inhibited ternary complex. This work describes a comprehensive analysis of a new HPPK inhibitor, and may provide a foundation for the development of novel antimicrobials targeting the folate biosynthetic pathway

    Characterization of an Nmr Homolog That Modulates GATA Factor-Mediated Nitrogen Metabolite Repression in Cryptococcus neoformans

    Get PDF
    Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis

    Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase.

    No full text
    The selection of drug resistant virus is a significant obstacle to the continued successful treatment of HIV infection. Reverse transcriptase is the target for numerous approved anti-HIV drugs including both nucleoside inhibitor (NRTI) and non-nucleosides (NNRTI). The many available crystal structures of RT reveal that, generally, in relation to their binding sites NRTI resistance mutations are generally more distally positioned, whilst for NNRTIs mutations are clustered. Such clustering implies a direct stereochemical basis for NNRTI resistance mechanisms, which is indeed observed in many cases such as the loss of key ring stacking interactions with inhibitors via mutations at Tyr181 and Tyr188. However, there are also indirect resistance mechanisms observed, e.g. V108I (via perturbation of Tyr188 and Tyr181) and K103N (apo-enzyme stabilisation). The resistance mechanism can be NNRTI-dependent as is the case for K101E where either indirect (nevirapine) or direct effects (efavirenz) apply. Structural studies have contributed to the design of newer generation NNRTIs and identified a number of features which may contribute to their much improved resistance profiles. Such factors include reduced interactions with Tyr181, the presence of inhibitor/main-chain H-bonds and ability to undergo conformational flexing and rearrangement within the mutated drug site

    Closing in on HIV drug resistance.

    No full text
    The structure of a catalytic complex of HIV-1 reverse transcriptase helps rationalize resistance mechanisms for nucleoside analog drugs

    Inhibition of HIV-1 reverse transcriptase by defined template/primer DNA oligonucleotides: effect of template length and binding characteristics.

    No full text
    The interaction of partially double stranded DNA oligonucleotides with HIV-1 RT was studied by investigating their ability to inhibit the homopolymeric poly(rC) directed (dG) synthesis reaction. A 20/18mer oligonucleotide, with a sequence based on the Lys3-tRNA primer region, showed stronger inhibition of the homopolymeric RT reaction than a G/C rich oligonucleotide series lacking or possessing a hairpin moiety. Interaction of the enzyme with the G/C rich oligonucleotides, as determined by IC50 measurements, was insensitive to the extent of the unpaired template region at the 3' or 5' position. Addition of a hairpin moiety, composed of four thymidine bases, onto G/C rich oligonucleotides increase their inhibitory potency (at least six times) and shifted the mode of inhibition of RT to competitive with respect to poly (rC).(dG), which was otherwise mixed (competitive/noncompetitive) for the linear G/C rich and 20/18mer oligonucleotides. The results indicate that interaction of the enzyme with the primer/template stem, but not with the unpaired template region, is an important step in complex formation

    Structure of the 'open' form of Aspergillus nidulans 3-dehydroquinate synthase at 1.7 A resolution from crystals grown following enzyme turnover.

    No full text
    Crystallization of Aspergillus nidulans 3-dehydroquinate synthase (DHQS), following turnover of the enzyme by addition of the substrate DAHP, gave a new crystal form (form J). Although the crystals have dimensions of only 50 x 20 x 5 micro m, they are well ordered, diffracting to 1.7 A. The space group is C222(1), with unit-cell parameters a = 90.0, b = 103.7, c = 177.4 A. Structure determination and refinement to R = 0.19 (R(free) = 0.25) shows the DHQS is in the 'open' form with the substrate site unoccupied but with some loop regions perturbed. Previous crystals of open-form DHQS only diffracted to 2.5 A resolution. The use of enzyme turnover may be applicable in other systems in attempts to improve crystal quality

    Dinucleotide-sensing proteins: linking signaling networks and regulating transcription.

    No full text
    Differential binding of dinucleotides to key regulatory proteins can modulate their interactions with other proteins and, in some cases, can signal fluctuations in the cellular redox state, to produce changes in transcription and physiological state. The dinucleotide-binding proteins human HSCARG and yeast transcription repressor Gal80p are examples that offer exciting glimpses into the potential for dinucleotide-sensing proteins to couple fluctuations in dinucleotide ratios to changes in transcription and to act as networking agents linking different classes of signaling molecules

    Crystallographic investigation of the cooperative interaction between trimethoprim, reduced cofactor and dihydrofolate reductase.

    Get PDF
    The structure of the complex between E. coli (RT500) form I dihydrofolate reductase, the antibacterial trimethoprim and NADPH has been determined by X-ray crystallography. The inhibitor and cofactor are in mutual contact. A flexible chain segment which includes Met 20 is in contact with the inhibitor in the presence of NADPH, but more distant in its absence. By contrast, the inhibitor conformation is little changed with NADPH present. We discuss these observations with regard to the mutually cooperative binding of these ligands to the protein, and to the associated enhancement of inhibitory selectivity shown by trimethoprim for bacterial as opposed to vertebrate enzyme
    corecore