16 research outputs found

    Nutrient Administration and Resistance Training

    Get PDF
    Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1-3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1,3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis

    Efeito da oferta dietética de proteína sobre o ganho muscular, balanço nitrogenado e cinética da 15N-glicina de atletas em treinamento de musculação Effect of the dietary protein intake on the muscular gain, nitrogen balance and 15N-glycine kinetics of athletes in resistance training

    No full text
    O efeito da oferta crescente de proteína sobre o ganho muscular, balanço nitrogenado e cinética da 15N-glicina de atletas de musculação foi estudado em seis jovens saudáveis, praticantes de treinamento com pesos (> 2 anos), sem uso de anabolizantes e concordes com os princípios éticos da pesquisa. Todos receberam adequações dietéticas (0,88g de proteína/kg/dia) pré-experimento de 2 semanas (D1) após o que se ofereceu, por idêntico período, dieta contendo 1,5g de proteína/kg de peso corporal/dia com 30kcal/g de proteína (dieta D2). A seguir receberam, nas próximas 2 semanas, a dieta D3, contendo 2,5g de proteína/kg de peso corporal/dia e 30 kcal/g proteína. As avaliações antropométricas, alimentares, biquímicas, balanço nitrogenado (BN) e cinética com 15N-glicina foram realizadas no início do estudo, pós D1 (M0) e no último dia das dietas D2 (M1) e D3 (M2). Ao final do estudo (4 semanas) houve aumento significativo na massa muscular (1,63±0,9kg), sem diferença entre D2 e D3. O BN acompanhou o consumo protéico/energético (M0 = -7,8g/dia; M1 = 5,6g/dia e M2 = 16,6g/dia) e a síntese protéica acompanhou o BN, com significância estatística (p<0,05) em relação ao basal (M0) mas semelhante entre D2 e D3 (M1 = 49,8±12,2g N/dia e M2 = 52,5±14,0g N/dia) e sem alteração significativa do catabolismo. Assim, os dados de BN e cinética da 15N-glicina indicam que a ingestão protéica recomendável para esses atletas é superior ao preconizado para sedentários (0,88g/kg) e inferior a 2,5g/kg de peso, sendo no caso, 1,5g de proteína/kg de peso/dia com ajuste do consumo energético para 30 kcal/g de proteína.<br>The effect of increased protein intake on the muscle mass gain, nitrogen balance and 15N-glycine kinetics was studied in six young, healthy subjects practitioners of strength training (> 2 years), without use of anabolic steroids and in agreement with the ethical principles of the research. All athletes received adequate diet (0.88g protein/kg/day) during 2 weeks prior the study (D1), and thereafter with diet providing 1.5g of protein/kg/day and 30kcal/g of protein (D2 diet) for the subsequent 2 weeks. Later on, they all received diet with 2.5g of protein/kg/day (D3 diet) and 30 kcal/g protein for the last two weeks. Body composition, food intake, blood biochemistry, nitrogen balance (NB) and 15N-glycine kinetics were determined at the beginning, after D1 (M0) and in the last days of the D2 (M1) and D3 (M2). The results showed at the end of the study (4 weeks) significant increase in muscle mass (1.63±0.9kg), without difference between D2 and D3. The NB followed the protein/energy consumption (M0 = -7.8g/day; M1 = 5.6g/day and D3 = 16.6g/day), the protein synthesis followed the NB, with M0 < (M1=M2) (M1 = 49.8±12.2g N/day and M2 = 52.5±14.0g N/day). Protein catabolism rate was similarly kept among diets. Thus, the results of the NB and 15N-glycine kinetics indicate that the recommended protein intake for these athletes is higher than the one for sedentary adults (0.88g/kg) and lower than 2.5g/kg, around 1.5g of protein/kg/day, with adjustment of the energy consumption to 30 kcal/g of protein

    Measurement of longitudinal changes in body composition during weight loss and maintenance in overweight and obese subjects using air-displacement plethysmography in comparison with the deuterium dilution technique

    Get PDF
    Background: Air-displacement plethysmography (ADP) may be a valid and practical technique to assess body composition in a clinical setting. Objective: This study aimed to assess longitudinal changes in body composition using ADP and to compare it with the deuterium dilution technique. Design: The study was a 6-months dietary intervention, consisting of four phases. The first month, subjects were fed in energy balance (phase I). This was followed by 1 month with an energy intake of 33% of energy requirements (phase II), followed by 2 months at 67% of energy requirements (phase III) and 2 months of ad libitum intake (phase IV). Body composition was assessed using ADP (Bod Pod) and deuterium dilution at baseline and at the end of each phase. The baseline analysis included 111 subjects (88 female). Sixty-one subjects (50 female) completed all measurements and were included in the longitudinal analysis. Results: At baseline, the fat mass (FM) as assessed with the Bod Pod was on average 2.3±4.2 kg (mean±2 s.d.) higher than that assessed with deuterium dilution. The difference in FM between techniques increased significantly with increasing FM (R2=0.23; P<0.001). Both techniques showed significant changes in FM over time P<0.001). On average, FM as assessed with the Bod Pod was 2.0 kg higher than with deuterium dilution (P<0.001). During phase II, there was a significant interaction between time and method, meaning that the Bod Pod showed a larger decrease in FM than deuterium dilution. Conclusions: The Bod Pod was able to detect all changes in the body composition, but consistently measured a higher FM than deuterium dilution.G Plasqui, S Soenen, MS Westerterp-Plantenga and KR Westerter
    corecore