10 research outputs found

    Proteaceae Leaf Fossils: Phylogeny, Diversity, Ecology and Austral Distributions

    No full text
    Foliar fossils of Proteaceae are reviewed, and useful specimens for interpreting evolution, and past and present distributions and environments are discussed. There are no definite Cretaceous occurrences. However, there is evidence of extant lineages dating from the Paleocene onwards, including tribe Persoonieae of subfamily Persoonioideae and each of the four tribes of subfamily Grevilleoideae. High diversity and abundance characterizes the Australian fossil record, including sclerophyllous and xeromorphic forms, but there is little evidence of the prominent extant subfamily Proteoideae. New Zealand had a much higher diversity of Proteaceae than at present, including Oligo-Miocene species of open vegetation. The South American leaf fossil record is not extensive. However, the fossil records of Embothrieae and Orites are consistent with the distributions of their extant relatives in South America and Australia being the result of vicariance. Overall, there is a need for more research on placing Proteaceae leaf fossils in a phylogenetic context.Raymond J. Carpente

    The current role of MRI in differentiating multiple sclerosis from its imaging mimics

    Get PDF
    MRI red flags proposed over a decade ago by the European Magnetic Resonance Network in MS (MAGNIMS) have guided clinicians in the diagnosis of multiple sclerosis (MS). However, the past 10 years have seen increased recognition that vascular disease can coexist and possibly interact with MS, improvements in the reliability of ways to differentiate MS from novel antibody-mediated CNS disorders (such as anti-aquaporin-4 antibody and myelin-oligodendrocyte glycoprotein antibody-associated diseases) and advances in MRI techniques. In this Review, MAGNIMS updates the imaging features that differentiate the most common mimics of MS, particularly age-related cerebrovascular disease and neuromyelitis optica, from MS itself. We also provide a pragmatic summary of the clinically useful MRI features that distinguish MS from its mimics and discuss the future of nonconventional techniques that have identified promising disease-specific features

    The current role of MRI in differentiating multiple sclerosis from its imaging mimics

    No full text
    corecore