18 research outputs found

    Cellulase recycling in biorefineriesis : is it possible?

    Get PDF
    On a near future, bio-based economy will assume a key role in our lives. Lignocellulosic materials (e.g., agroforestry residues, industrial/solid wastes) represent a cheaper and environmentally friendly option to fossil fuels. Indeed, following suitable processing, they can be metabolized by different microorganisms to produce a wide range of compounds currently obtained by chemical synthesis. However, due to the recalcitrant nature of these materials, they cannot be directly used by microorganisms, the conversion of polysaccharides into simpler sugars being thus required. This conversion, which is usually undertaken enzymatically, represents a significant part on the final cost of the process. This fact has driven intense efforts on the reduction of the enzyme cost following different strategies. Here, we describe the fundamentals of the enzyme recycling technology, more specifically, cellulase recycling. We focus on the main strategies available for the recovery of both the liquid- and solid-bound enzyme fractions and discuss the relevant operational parameters (e.g., composition, temperature, additives, and pH). Although the efforts from the industry and enzyme suppliers are primarily oriented toward the development of enzyme cocktails able to quickly and effectively process biomass, it seems clear by now that enzyme recycling is technically possible.Financial support from FEDER and Fundação para a Ciência e a Tecnologia (FCT): GlycoCBMs Project PTDC/AGR-FOR/3090/2012–FCOMP-01-0124- FEDER-027948 and Strategic Project PEst-OE/EQB/LA0023/2013, Project BBioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028 Cofunded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER and the PhD grant to DG (SFRH/BD/88623/ 2012) and ACR (SFRH/BD/89547/2012)

    Windbreaks in North American Agricultural Systems

    Get PDF
    Windbreaks are a major component of successful agricultural systems throughout the world. The focus of this chapter is on temperate-zone, commercial, agricultural systems in North America, where windbreaks contribute to both producer profitability and environmental quality by increasing crop production while simultaneously reducing the level of off-farm inputs. They help control erosion and blowing snow, improve animal health and survival under winter conditions, reduce energy consumption of the farmstead unit, and enhance habitat diversity, providing refuges for predatory birds and insects. On a larger landscape scale windbreaks provide habitat for various types of wildlife and have the potential to contribute significant benefits to the carbon balance equation, easing the economic burdens associated with climate change. For a windbreak to function properly, it must be designed with the needs of the landowner in mind. The ability of a windbreak to meet a specific need is determined by its structure: both external structure, width, height, shape, and orientation as well as the internal structure; the amount and arrangement of the branches, leaves, and stems of the trees or shrubs in the windbreak. In response to windbreak structure, wind flow in the vicinity of a windbreak is altered and the microclimate in sheltered areas is changed; temperatures tend to be slightly higher and evaporation is reduced. These types of changes in microclimate can be utilized to enhance agricultural sustainability and profitability. While specific mechanisms of the shelter response remain unclear and are topics for further research, the two biggest challenges we face are: developing a better understanding of why producers are reluctant to adopt windbreak technology and defining the role of woody plants in the agricultural landscape

    Identification and genetic diversity of two invasive Pissodes spp. Germar (Coleoptera: Curculionidae) in their introduced range in the southern hemisphere

    No full text
    During the first half of the twentieth century, two accidental cases of introduction of Pissodes weevils were recorded from the southern hemisphere. The weevils in South Africa were identified as the deodar weevil (Pissodes nemorensis) and those in South America as the small banded pine weevil (Pissodes castaneus). Wide distribution of the two species in their invasive range, general difficulty in identifying some Pissodes spp., and the varying feeding and breeding behaviours of the species in South Africa has necessitated better evidence of species identity and genetic diversity of both species and population structure of the species in South Africa. Barcoding and the Jerry-to-Pat region of the COI gene were investigated. Morphometric data of the South African species was analysed. Our results confirmed the introduction of only one Pissodes species of North American origin to South Africa. However, this species is not P. nemorensis, but an unrecognized species of the P. strobi complex or a hybrid between P. strobi and P. nemorensis. Only P. castaneus, of European origin, was identified from South America. We identified ten mitochondrial DNA haplotypes from South Africa with evidence of moderate genetic structure among geographic populations. Terminal leader and bole-feeding weevils did not differ at the COI locus. A single haplotype was identified from populations of P. castaneus in South America. Results of the present study will have implications on quarantine, research and management of these insect species.Tree Protection Co-operative Program (TPCP), DST-National Research Foundation (NRF) and the University of Pretoria, South Africa.http://link.springer.com/journal/105302017-08-31hb2017Forestry and Agricultural Biotechnology Institute (FABI)GeneticsZoology and Entomolog

    Interactions between biochar and mycorrhizal fungi in a water-stressed agricultural soil

    No full text
    © 2016, Springer-Verlag Berlin Heidelberg. Biochar may alleviate plant water stress in association with arbuscular mycorrhizal (AM) fungi but research has not been conclusive. Therefore, a glasshouse experiment was conducted to understand how interactions between AM fungi and plants respond to biochar application under water-stressed conditions. A twin chamber pot system was used to determine whether a woody biochar increased root colonisation by a natural AM fungal population in a pasture soil (‘field’ chamber) and whether this was associated with increased growth of extraradical AM fungal hyphae detected by plants growing in an adjacent (‘bait’) chamber containing irradiated soil. The two chambers were separated by a mesh that excluded roots. Subterranean clover was grown with and without water stress and harvested after 35, 49 and 63 days from each chamber. When biochar was applied to the field chamber under water-stressed conditions, shoot mass increased in parallel with mycorrhizal colonisation, extraradical hyphal length and shoot phosphorus concentration. AM fungal colonisation of roots in the bait chamber indicated an increase in extraradical mycorrhizal hyphae in the field chamber. Biochar had little effect on AM fungi or plant growth under well-watered conditions. The biochar-induced increase in mycorrhizal colonisation was associated with increased growth of extraradical AM fungal hyphae in the pasture soil under water-stressed conditions
    corecore