4 research outputs found

    Molecular Structure, Biosynthesis, and Distribution of Coenzyme Q

    No full text
    Coenzyme Q is a very old molecule in evolutionary terms that has accumulated numerous functions in the cellular metabolism beyond its primordial function, the electron transport. In all organisms, coenzyme Q maintains a highly conserved structure allowing a localization inside cell membranes in a hydrophobic environment thanks to having an isoprenoid tail, and at the same time allows the polar ring benzene to interact with acceptors and electron donors. Coenzyme Q deficiency constitutes a group of mitochondrial diseases. Affected patients suffer mainly a decrease in energy production that induces dysfunctions in most organs and body systems. Current therapeutic alternatives are based on increasing coenzyme Q levels either through induction of endogenous mechanisms or exogenous supplementation. This chapter includes both aspects, the mechanisms associated with the coenzyme Q supplementation and the regulatory mechanisms of coenzyme Q biosynthesis. In terms of synthesis, the structure of coenzyme Q is complicated since it requires the participation of two well-differentiated pathways that must be carefully regulated. The synthesis is carried out through the participation of a multienzyme complex located in the inner mitochondrial membrane and controlled by different levels of regulation that at this time are not well-known

    Mitochondrial Respiration: Involvement of the Alternative Respiratory Pathway and Residual Respiration in Abiotic Stress Responses

    No full text
    corecore