48 research outputs found

    Transcription of Muscle Actin Genes by a Nuclear Form of Mitochondrial RNA Polymerase

    Get PDF
    Actins are the major constituent of the cytoskeleton. In this report we present several lines of evidence that muscle actin genes are transcribed by nuclear isoform of mitochondrial RNA polymerase (spRNAP-IV) whereas the non-muscle actin genes are transcribed by the conventional RNA polymerase II (PolII). We show that mRNA level of muscle actin genes are resistant to PolII inhibitors α-amanitin and triptolide as well as insensitive to knockdown of PolII but not to knockdown of spRNAP-IV, in contrast to non-muscle actin genes in several cell lines. Similar results are obtained from nuclear run-on experiments. Reporter assay using muscle actin or PolII gene promoters also demonstrate the differential sensitivity to PolII inhibitors. Finally, chromatin-immunoprecipitation experiment was used to demonstrate that spRNAP-IV is associated with promoter of muscle actin genes but not with that of non-muscle gene and knockdown of spRNAP-IV depleted this polymerase from muscle actin genes. In summary, these experiments indicate that the two types of actin genes are transcribed by different transcription machinery. We also found that POLRMT gene is transcribed by spRNAP-IV, and actin genes are sensitive to oligomycin, suggesting a transcription coupling between mitochondria and nucleus

    D1 Dopamine Receptor Signaling Is Modulated by the R7 RGS Protein EAT-16 and the R7 Binding Protein RSBP-1 in Caenoerhabditis elegans Motor Neurons

    Get PDF
    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior

    siRNAs: Potential therapeutic agents against Hepatitis C Virus

    Get PDF
    Hepatitis C virus is a major cause of chronic liver diseases which can lead to permanent liver damage, hepatocellular carcinoma and death. The presently available treatment with interferon plus ribavirin, has limited benefits due to adverse side effects such as anemia, depression and "flu-like" symptoms. Needless to mention, the effectiveness of interferon therapy is predominantly, if not exclusively, limited to virus type 3a and 3b whereas in Europe and North America the majority of viral type is 1a and 2a. Due to the limited efficiency of current therapy, RNA interference (RNAi) a novel regulatory and powerful silencing approach for molecular therapeutics through a sequence-specific RNA degradation process represents an alternative option. Several reports have indicated the efficiency and specificity of synthetic and vector based siRNAs inhibiting HCV replication. In the present review, we focused that combination of siRNAs against virus and host genes will be a better option to treat HC

    Testing a global standard for quantifying species recovery and assessing conservation impact

    Get PDF
    Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard

    EXPERIMENTAL AND ANALYTICAL INVESTIGATIONS ON PLANE STRAIN TOUGHNESS FOR 7085 ALUMINUM ALLOY

    No full text
    Data are presented on plane strain fracture toughness, yield strength, and strain hardening for three orientations of samples from quarter-thickness (t/4) and midthickness (t/2) locations of alloy 7085 plates with different gages aged past peak strength with different 2nd step aging times (T7X). These data are fit to an expression adapted from Hahn and Rosenfield (1968), in which toughness is proportional to strain hardening, the square root of yield strength, and the square root of a critical strain epsilon (c) . Strain-hardening exponent n is replaced by an alternative measure, since the stress-strain data do not follow a power law. With increased overaging, the increase of strain hardening dominates the decrease of strength, such that toughness increases. The critical strain, which represents the influence of the microstructure on toughness, has no trend with overaging time. Constituents and grain boundary precipitates, thought to be the microstructural elements most differentiating alloy 7085 from alloy 7050, are quantified at t/4 and at t/2 on one plate. From this the greater critical strain at t/2 than at t/4 is mainly attributed to greater effective spacing of constituents. Critical strain is also greater with longitudinal loading and crack propagating in the long transverse direction, but definite understanding of this will require better anisotropic fracture mechanics and further microstructural characterization.open1125sciescopu

    Direct repeats in HSF binding sites

    No full text

    Pharmacogenomics of cisplatin-induced neurotoxicities: Hearing loss, tinnitus, and peripheral sensory neuropathy.

    No full text
    Cisplatin is a critical component of first-line chemotherapy for several cancers, but causes peripheral sensory neuropathy, hearing loss, and tinnitus. We aimed to identify comorbidities for cisplatin-induced neurotoxicities among large numbers of similarly treated patients without the confounding effect of cranial radiotherapy. Utilizing linear and logistic regression analyses on 1680 well-characterized cisplatin-treated testicular cancer survivors, we analyzed associations of hearing loss, tinnitus, and peripheral neuropathy with nongenetic comorbidities. Genome-wide association studies and gene-based analyses were performed on each phenotype. Hearing loss, tinnitus, and peripheral neuropathy, accounting for age and cisplatin dose, were interdependent. Survivors with these neurotoxicities experienced more hypertension and poorer self-reported health. In addition, hearing loss was positively associated with BMIs at clinical evaluation and nonwork-related noise exposure (>5 h/week). Tinnitus was positively associated with tobacco use, hypercholesterolemia, and noise exposure. We observed positive associations between peripheral neuropathy and persistent vertigo, tobacco use, and excess alcohol consumption. Hearing loss and TXNRD1, which plays a key role in redox regulation, showed borderline significance (p = 4.2 × 10-6 ) in gene-based analysis. rs62283056 in WFS1 previously found to be significantly associated with hearing loss (n = 511), was marginally significant in an independent replication cohort (p = 0.06; n = 606). Gene-based analyses identified significant associations between tinnitus and WNT8A (p = 2.5 × 10-6 ), encoding a signaling protein important in germ cell tumors. Genetics variants in TXNRD1 and WNT8A are notable risk factors for hearing loss and tinnitus, respectively. Future studies should investigate these genes and if replicated, identify their potential impact on preventive strategies
    corecore