10 research outputs found
Recommended from our members
Loss of Dictyostelium HSPC300 causes a scar-like phenotype and loss of SCAR protein
<p>Abstract</p> <p>Background</p> <p>SCAR/WAVE proteins couple signalling to actin polymerization, and are thus fundamental to the formation of pseudopods and lamellipods. They are controlled as part of a five-membered complex that includes the tiny HSPC300 protein. It is not known why SCAR/WAVE is found in such a large assembly, but in <it>Dictyostelium </it>the four larger subunits have different, clearly delineated functions.</p> <p>Results</p> <p>We have generated <it>Dictyostelium </it>mutants in which the HSPC300 gene is disrupted. As has been seen in other regulatory complex mutants, SCAR is lost in these cells, apparently by a post-translational mechanism, though PIR121 levels do not change. HSPC300 knockouts resemble <it>scar </it>mutants in slow migration, roundness, and lack of large pseudopods. However <it>hspc300</it>-colonies on bacteria are larger and more similar to wild type, suggesting that some SCAR function can survive without HSPC300. We find no evidence for functions of HSPC300 outside the SCAR complex.</p> <p>Conclusion</p> <p>HSPC300 is essential for most SCAR complex functions. The phenotype of HSPC300 knockouts is most similar to mutants in <it>scar</it>, not the other members of the SCAR complex, suggesting that HSPC300 acts most directly on SCAR itself.</p
SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila
In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology