8 research outputs found

    RNA motif search with data-driven element ordering

    Get PDF
    BACKGROUND: In this paper, we study the problem of RNA motif search in long genomic sequences. This approach uses a combination of sequence and structure constraints to uncover new distant homologs of known functional RNAs. The problem is NP-hard and is traditionally solved by backtracking algorithms. RESULTS: We have designed a new algorithm for RNA motif search and implemented a new motif search tool RNArobo. The tool enhances the RNAbob descriptor language, allowing insertions in helices, which enables better characterization of ribozymes and aptamers. A typical RNA motif consists of multiple elements and the running time of the algorithm is highly dependent on their ordering. By approaching the element ordering problem in a principled way, we demonstrate more than 100-fold speedup of the search for complex motifs compared to previously published tools. CONCLUSIONS: We have developed a new method for RNA motif search that allows for a significant speedup of the search of complex motifs that include pseudoknots. Such speed improvements are crucial at a time when the rate of DNA sequencing outpaces growth in computing. RNArobo is available at http://compbio.fmph.uniba.sk/rnarobo. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12859-016-1074-x) contains supplementary material, which is available to authorized users

    Co-transcriptional Analysis of Self-Cleaving Ribozymes and Their Ligand Dependence.

    No full text
    Self-cleaving ribozymes are RNA molecules that catalyze a site-specific self-scission reaction. Analysis of self-cleavage is a crucial aspect of the biochemical study and understanding of these molecules. Here we describe a co-transcriptional assay that allows the analysis of self-cleaving ribozymes in different reaction conditions and in the presence of desired ligands and/or cofactors. Utilizing a standard T7 RNA polymerase in vitro transcription system under limiting Mg2+ concentration, followed by a 25-fold dilution of the reaction in desired conditions of self-cleavage (buffer, ions, ligands, pH, temperature, etc.) to halt the synthesis of new RNA molecules, allows the study of self-scission of these molecules without the need for purification or additional preparation steps, such as refolding procedures. Furthermore, because the transcripts are not denatured, this assay likely yields RNAs in conformations relevant to co-transcriptionally folded species in vivo

    Topological constraints of structural elements in regulation of catalytic activity in HDV-like self-cleaving ribozymes

    No full text
    Self-cleaving ribozymes fold into intricate structures, which orient active site groups into catalytically competent conformations. Most ribozyme families have distinct catalytic cores stabilized by tertiary interactions between domains peripheral to those cores. We show that large hepatitis delta virus (HDV)-like ribozymes are activated by peripheral domains that bring two helical segments, P1 and P2, into proximity – a “pinch” that results in rate acceleration by almost three orders of magnitude. Kinetic analysis of ribozymes with systematically altered length and stability of the peripheral domain revealed that about one third of its free energy of formation is used to lower an activation energy barrier, likely related to a rate-limiting conformational change leading to the pre-catalytic state. These findings provide a quantitative view of enzyme regulation by peripheral domains and may shed light on the energetics of allosteric regulation
    corecore