46 research outputs found

    Treatment of developmental dyslexia: A review

    Get PDF
    Remarkably few research articles on the treatment of developmental dyslexia were published during the last 25 years. Some treatment research arose from the temporal processing theory, some from the phonological deficit hypothesis and some more from the balance model of learning to read and dyslexia. Within the framework of that model, this article reviews the aetiology of dyslexia sub-types, the neuropsychological rationale for treatment, the treatment techniques and the outcomes of treatment research. The possible mechanisms underlying the effects of treatment are discussed. © 2005 Informa UK Ltd All rights reserved

    SH3 Domain-Mediated Recruitment of Host Cell Amphiphysins by Alphavirus nsP3 Promotes Viral RNA Replication

    Get PDF
    Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3) domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV), Sindbis (SINV), and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication

    Two Legionnaires' disease cases associated with industrial waste water treatment plants: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finnish and Swedish waste water systems used by the forest industry were found to be exceptionally heavily contaminated with legionellae in 2005.</p> <p>Case presentation</p> <p>We report two cases of severe pneumonia in employees working at two separate mills in Finland in 2006. <it>Legionella </it>serological and urinary antigen tests were used to diagnose Legionnaires' disease in the symptomatic employees, who had worked at, or close to, waste water treatment plants. Since the findings indicated a <it>Legionella </it>infection, the waste water and home water systems were studied in more detail. The antibody response and <it>Legionella </it>urinary antigen finding of Case A indicated that the infection had been caused by <it>Legionella pneumophila </it>serogroup 1. Case A had been exposed to legionellae while installing a pump into a post-clarification basin at the waste water treatment plant of mill A. Both the water and sludge in the basin contained high concentrations of <it>Legionella pneumophila </it>serogroup 1, in addition to serogroups 3 and 13. Case B was working 200 meters downwind from a waste water treatment plant, which had an active sludge basin and cooling towers. The antibody response indicated that his disease was due to <it>Legionella pneumophila </it>serogroup 2. The cooling tower was the only site at the waste water treatment plant yielding that serogroup, though water in the active sludge basin yielded abundant growth of <it>Legionella pneumophila </it>serogroup 5 and <it>Legionella rubrilucens</it>. Both workers recovered from the disease.</p> <p>Conclusion</p> <p>These are the first reported cases of Legionnaires' disease in Finland associated with industrial waste water systems.</p

    Thermal Tolerance of the Coffee Berry Borer Hypothenemus hampei: Predictions of Climate Change Impact on a Tropical Insect Pest

    Get PDF
    Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (rmax) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2

    Drug Interactions in the Gastrointestinal Tract and Their Impact on Drug Absorption and Systemic Availability: A Mechanistic Review

    No full text
    corecore