7 research outputs found
Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review
The purpose of this review is to examine the literature that has investigated mechanomyographic (MMG) amplitude and frequency responses during dynamic muscle actions. To date, the majority of MMG research has focused on isometric muscle actions. Recent studies, however, have examined the MMG time and/or frequency domain responses during various types of dynamic activities, including dynamic constant external resistance (DCER) and isokinetic muscle actions, as well as cycle ergometry. Despite the potential influences of factors such as changes in muscle length and the thickness of the tissue between the muscle and the MMG sensor, there is convincing evidence that during dynamic muscle actions, the MMG signal provides valid information regarding muscle function. This argument is supported by consistencies in the MMG literature, such as the close relationship between MMG amplitude and power output and a linear increase in MMG amplitude with concentric torque production. There are still many issues, however, that have yet to be resolved, and the literature base for MMG during both dynamic and isometric muscle actions is far from complete. Thus, it is important to investigate the unique applications of MMG amplitude and frequency responses with different experimental designs/methodologies to continually reassess the uses/limitations of MMG
New fundamental resistance exercise determinants of molecular and cellular muscle adaptations
Physical activity relies on muscular force. In adult skeletal muscle, force results from the contraction of postmitotic, multinucleated myofibres of different contractile and metabolic properties. Myofibres can adapt to (patho-)physiological conditions of altered functional demand by radial growth, longitudinal growth, and regulation of fibre type functional gene modules. The adaptation's specificity depends on the distinct molecular and cellular events triggered by unique combinations of conditional cues. In order to derive effective and tailored exercise prescriptions, it must be determined (1) which mechano-biological condition leads to what molecular/cellular response, and (2) how this molecular/cellular response relates to the structural, contractile, and metabolic adaptation. It follows that a thorough mechano-biological description of the loading condition is imperative. Unfortunately, the definition of (resistance) exercise conditions in the past and present literature is insufficient. It is classically limited to load magnitude, number of repetitions and sets, rest in-between sets, number of interventions/week, and training period. In this review, we show why the current description is insufficient, and identify new determinants of quantitative and/or qualitative effects on skeletal muscle with respect to resistance exercise in healthy, adult humans. These new mandatory determinants comprise the fractional and temporal distribution of the contraction modes per repetition, duration of one repetition, rest in-between repetitions, time under tension, muscular failure, range of motion, recovery time, and anatomical definition. We strongly recommend to standardise the design and description of all future resistance exercise investigations by using the herein proposed set of 13 mechano-biological determinants (classical and new ones