574 research outputs found

    Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury

    Get PDF
    Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer's disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate-severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials

    Diffuse axonal injury predicts neurodegeneration after moderate–severe traumatic brain injury

    Get PDF
    Traumatic brain injury is associated with elevated rates of neurodegenerative diseases such as Alzheimer’s disease and chronic traumatic encephalopathy. In experimental models, diffuse axonal injury triggers post-traumatic neurodegeneration, with axonal damage leading to Wallerian degeneration and toxic proteinopathies of amyloid and hyperphosphorylated tau. However, in humans the link between diffuse axonal injury and subsequent neurodegeneration has yet to be established. Here we test the hypothesis that the severity and location of diffuse axonal injury predicts the degree of progressive post-traumatic neurodegeneration. We investigated longitudinal changes in 55 patients in the chronic phase after moderate–severe traumatic brain injury and 19 healthy control subjects. Fractional anisotropy was calculated from diffusion tensor imaging as a measure of diffuse axonal injury. Jacobian determinant atrophy rates were calculated from serial volumetric T1 scans as a measure of measure post-traumatic neurodegeneration. We explored a range of potential predictors of longitudinal post-traumatic neurodegeneration and compared the variance in brain atrophy that they explained. Patients showed widespread evidence of diffuse axonal injury, with reductions of fractional anisotropy at baseline and follow-up in large parts of the white matter. No significant changes in fractional anisotropy over time were observed. In contrast, abnormally high rates of brain atrophy were seen in both the grey and white matter. The location and extent of diffuse axonal injury predicted the degree of brain atrophy: fractional anisotropy predicted progressive atrophy in both whole-brain and voxelwise analyses. The strongest relationships were seen in central white matter tracts, including the body of the corpus callosum, which are most commonly affected by diffuse axonal injury. Diffuse axonal injury predicted substantially more variability in white matter atrophy than other putative clinical or imaging measures, including baseline brain volume, age, clinical measures of injury severity and microbleeds (>50% for fractional anisotropy versus <5% for other measures). Grey matter atrophy was not predicted by diffuse axonal injury at baseline. In summary, diffusion MRI measures of diffuse axonal injury are a strong predictor of post-traumatic neurodegeneration. This supports a causal link between axonal injury and the progressive neurodegeneration that is commonly seen after moderate/severe traumatic brain injury but has been of uncertain aetiology. The assessment of diffuse axonal injury with diffusion MRI is likely to improve prognostic accuracy and help identify those at greatest neurodegenerative risk for inclusion in clinical treatment trials

    White matter abnormalities in active elite adult rugby players

    Get PDF
    The recognition, diagnosis and management of mild traumatic brain injuries are difficult and confusing. It is unclear how the severity and number of injuries sustained relate to brain injuries, such as diffuse axonal injury, diffuse vascular injury and progressive neurodegeneration. Advances in neuroimaging techniques enable the investigation of neuropathologies associated with acute and long-term effects of injury. Head injuries are the most commonly reported injury seen during professional rugby. There is increased vigilance for the immediate effects of these injuries in matches, but there has been surprisingly little research investigating the longer-term effects of rugby participation. Here, we present a longitudinal observational study investigating the relationship of exposure to rugby participation and sub-acute head injuries in professional adult male and female rugby union and league players using advanced MRI. Diffusion tensor imaging and susceptibility weighted imaging was used to assess white matter structure and evidence of axonal and diffuse vascular injury. We also studied changes in brain structure over time using Jacobian Determinant statistics extracted from serial volumetric imaging. We tested 41 male and 3 female adult elite rugby players, of whom 21 attended study visits after a head injury, alongside 32 non-sporting controls, 15 non-collision-sport athletic controls and 16 longitudinally assessed controls. Eighteen rugby players participated in the longitudinal arm of the study, with a second visit at least 6 months after their first scan. Neuroimaging evidence of either axonal injury or diffuse vascular injury was present in 23% (10/44) of players. In the non-acutely injured group of rugby players, abnormalities of fractional anisotropy and other diffusion measures were seen. In contrast, non-collision-sport athletic controls were not classified as showing abnormalities. A group level contrast also showed evidence of sub-acute injury using diffusion tensor imaging in rugby players. Examination of longitudinal imaging revealed unexpected reductions in white matter volume in the elite rugby players studied. These changes were not related to self-reported head injury history or neuropsychological test scores and might indicate excess neurodegeneration in white matter tracts affected by injury. Taken together, our findings suggest an association of participation in elite adult rugby with changes in brain structure. Further well-designed large-scale studies are needed to understand the impact of both repeated sports-related head impacts and head injuries on brain structure, and to clarify whether the abnormalities we have observed are related to an increased risk of neurodegenerative disease and impaired neurocognitive function following elite rugby participation

    Kinetic analysis of the translocator protein positron emission tomography ligand [F-18]GE-180 in the human brain

    Get PDF
    Purpose: PET can image neuroinflammation by targeting the translocator protein (TSPO), which is upregulated in activated microglia. The high nonspecific binding of the first-generation TSPO radioligand [11C]PK-11195 limits accurate quantification. [18F]GE-180, a novel TSPO ligand, displays superior binding to [11C]PK-11195 in vitro. Our objectives were to: (1) evaluate tracer characteristics of [18F]GE-180 in the brains of healthy human subjects; and (2) investigate whether the TSPO Ala147Thr polymorphism influences outcome measures. // Methods: Ten volunteers (five high-affinity binders, HABs, and five mixed-affinity binders, MABs) underwent a dynamic PET scan with arterial sampling after injection of [18F]GE-180. Kinetic modelling of time–activity curves with one-tissue and two-tissue compartment models and Logan graphical analysis was applied to the data. The primary outcome measure was the total volume of distribution (V T) across various regions of interest (ROIs). Secondary outcome measures were the standardized uptake values (SUV), the distribution volume and SUV ratios estimated using a pseudoreference region. // Results: The two-tissue compartment model was the best model. The average regional delivery rate constant (K 1) was 0.01 mL cm−3 min−1 indicating low extraction across the blood–brain barrier (1 %). The estimated median V T across all ROIs was also low, ranging from 0.16 mL cm−3 in the striatum to 0.38 mL cm−3 in the thalamus. There were no significant differences in V T between HABs and MABs across all ROIs. // Conclusion: A reversible two-tissue compartment model fitted the data well and determined that the tracer has a low first-pass extraction (approximately 1 %) and low V T estimates in healthy individuals. There was no observable dependency on the rs6971 polymorphism as compared to other second-generation TSPO PET tracers. Investigation of [18F]GE-180 in populations with neuroinflammatory disease is needed to determine its suitability for quantitative assessment of TSPO expression

    Mitochondrial phylogeography of baboons (Papio spp.) – Indication for introgressive hybridization?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Baboons of the genus <it>Papio </it>are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome <it>b </it>gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.</p> <p>Results</p> <p>Based on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).</p> <p>Conclusion</p> <p>Our study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.</p

    Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer

    Get PDF
    Trastuzumab is an effective treatment for patients with metastatic breast cancer (MBC) that overexpresses HER-2. A high incidence of brain metastases (BM) has been noted in patients receiving trastuzumab. A retrospective chart review was conducted of 100 patients commencing trastuzumab for metastatic breast cancer from July 1999 to December 2002, at the Christie Hospital. Seven patients were excluded; five patients developed central nervous system metastases prior to starting trastuzumab, and inadequate data were available for two. Out of the remaining 93 patients, 23 (25%) have developed BM to date. In all, 46 patients have died, and of these 18 (39%) have been diagnosed with BM prior to death. Of the 23 patients developing BM, 18 (78%) were hormone receptor negative and 18 (78%) had visceral disease. Univariate analysis showed a significant association between the development of cerebral disease and both hormone receptor status and the presence of visceral disease. In conclusion, a high proportion of patients with MBC treated with trastuzumab develop symptomatic cerebral metastases. HER-2-positive breast cancer may have a predilection for the brain, or trastuzumab therapy may change the disease pattern by prolonging survival. New strategies to address this problem require investigation in this group of patients

    Computerised cognitive assessment in patients with traumatic brain injury: an observational study of feasibility and sensitivity relative to established clinical scales

    Get PDF
    Background: Online technology could potentially revolutionise how patients are cognitively assessed and monitored. However, it remains unclear whether assessments conducted remotely can match established pen-and-paper neuropsychological tests in terms of sensitivity and specificity. Methods: This observational study aimed to optimise an online cognitive assessment for use in traumatic brain injury (TBI) clinics. The tertiary referral clinic in which this tool has been clinically implemented typically sees patients a minimum of 6 months post-injury in the chronic phase. Between March and August 2019, we conducted a cross-group, cross-device and factor analyses at the St. Mary's Hospital TBI clinic and major trauma wards at Imperial College NHS trust and St. George's Hospital in London (UK), to identify a battery of tasks that assess aspects of cognition affected by TBI. Between September 2019 and February 2020, we evaluated the online battery against standard face-to-face neuropsychological tests at the Imperial College London research centre. Canonical Correlation Analysis (CCA) determined the shared variance between the online battery and standard neuropsychological tests. Finally, between October 2020 and December 2021, the tests were integrated into a framework that automatically generates a results report where patients’ performance is compared to a large normative dataset. We piloted this as a practical tool to be used under supervised and unsupervised conditions at the St. Mary's Hospital TBI clinic in London (UK). Findings: The online assessment discriminated processing-speed, visual-attention, working-memory, and executive-function deficits in TBI. CCA identified two significant modes indicating shared variance with standard neuropsychological tests (r = 0.86, p < 0.001 and r = 0.81, p = 0.02). Sensitivity to cognitive deficits after TBI was evident in the TBI clinic setting under supervised and unsupervised conditions (F (15,555) = 3.99; p < 0.001). Interpretation: Online cognitive assessment of TBI patients is feasible, sensitive, and efficient. When combined with normative sociodemographic models and autogenerated reports, it has the potential to transform cognitive assessment in the healthcare setting. Funding: This work was funded by a National Institute for Health Research (NIHR) Invention for Innovation (i4i) grant awarded to DJS and AH ( II-LB-0715-20006)

    Endotracheal intubation skill acquisition by medical students

    Get PDF
    During the course of their training, medical students may receive introductory experience with advanced resuscitation skills. Endotracheal intubation (ETI – the insertion of a breathing tube into the trachea) is an example of an important advanced resuscitation intervention. Only limited data characterize clinical ETI skill acquisition by medical students. We sought to characterize medical student acquisition of ETI procedural skill.11Presented as a poster discussion on 17 October 2007 at the annual meeting of the American Society of Anesthesiologists in San Francisco, CA.The study included third-year medical students participating in a required anesthesiology clerkship. Students performed ETI on operating room patients under the supervision of attending anesthesiologists. Students reported clinical details of each ETI effort, including patient age, sex, Mallampati score, number of direct laryngoscopies and ETI success. Using mixed-effects regression, we characterized the adjusted association between ETI success and cumulative ETI experience.ETI was attempted by 178 students on 1,646 patients (range 1–23 patients per student; median 9 patients per student, IQR 6–12). Overall ETI success was 75.0% (95% CI 72.9–77.1%). Adjusted for patient age, sex, Mallampati score and number of laryngoscopies, the odds of ETI success improved with cumulative ETI encounters (odds ratio 1.09 per additional ETI encounter; 95% CI 1.04–1.14). Students required at least 17 ETI encounters to achieve 90% predicted ETI success.In this series medical student ETI proficiency was associated with cumulative clinical procedural experience. Clinical experience may provide a viable strategy for fostering medical student procedural skills
    corecore