14 research outputs found

    Accelerator mass spectrometry dating at Catalhoyuk

    No full text
    Several charred plant and charcoal samples from various stratigraphic levels of the Neolithic Site, 1 Catalhtoyuk - Turkey, were dated in the AMS facility of Purdue University (PRIME Lab). Radiocarbon dates reveal a complicated chronology, as was foreseen from archeological investigations. Our measurements suggest that this unique Neolithic town may have been initiated at the East mound around 8390 BP

    Investigating the effect of enhanced oil recovery on the noble gas signature of casing gases and produced waters from selected California oil fields

    No full text
    In regions where water resources are scarce and in high demand, it is important to safeguard against contamination of groundwater aquifers by oil-field fluids (water, gas, oil). In this context, the geochemical characterisation of these fluids is critical so that anthropogenic contaminants can be readily identified. The first step is characterising pre-development geochemical fluid signatures (i.e., those unmodified by hydrocarbon resource development) and understanding how these signatures may have been perturbed by resource production, particularly in the context of enhanced oil recovery (EOR) techniques. Here, we present noble gas isotope data in fluids produced from oil wells in several water-stressed regions in California, USA, where EOR is prevalent. In oil-field systems, only casing gases are typically collected and measured for their noble gas compositions, even when oil and/or water phases are present, due to the relative ease of gas analyses. However, this approach relies on a number of assumptions (e.g., equilibrium between phases, water-to-oil ratio (WOR) and gas-to-oil ratio (GOR) in order to reconstruct the multiphase subsurface compositions. Here, we adopt a novel, more rigorous approach, and measure noble gases in both casing gas and produced fluid (oil-water-gas mixtures) samples from the Lost Hills, Fruitvale, North and South Belridge (San Joaquin Basin, SJB) and Orcutt (Santa Maria Basin) Oil Fields. Using this method, we are able to fully characterise the distribution of noble gases within a multiphase hydrocarbon system. We find that measured concentrations in the casing gases agree with those in the gas phase in the produced fluids and thus the two sample types can be used essentially interchangeably. EOR signatures can readily be identified by their distinct air-derived noble gas elemental ratios (e.g., 20Ne/36Ar), which are elevated compared to pre-development oil-field fluids, and conspicuously trend towards air values with respect to elemental ratios and overall concentrations. We reconstruct reservoir 20Ne/36Ar values using both casing gas and produced fluids and show that noble gas ratios in the reservoir are strongly correlated (r2 = 0.88–0.98) to the amount of water injected within ~500 m of a well. We suggest that the 20Ne/36Ar increase resulting from injection is sensitive to the volume of fluid interacting with the injectate, the effective water-to-oil ratio, and the composition of the injectate. Defining both the pre-development and injection-modified hydrocarbon reservoir compositions are crucial for distinguishing the sources of hydrocarbons observed in proximal groundwaters, and for quantifying the transport mechanisms controlling this occurrence

    Prostate Cancer Radionuclide Therapy

    No full text

    A novel method for the extraction, purification, and characterization of noble gases in produced fluids

    No full text
    Hydrocarbon systems with declining or viscous oil production are often stimulated using enhanced oil recovery (EOR) techniques, such as the injection of water, steam, and CO2, in order to increase oil and gas production. As EOR and other methods of enhancing production such as hydraulic fracturing have become more prevalent, environmental concerns about the impact of both new and historical hydrocarbon production on overlying shallow aquifers have increased. Noble gas isotopes are powerful tracers of subsurface fluid provenance and can be used to understand the impact of EOR on hydrocarbon systems and potentially overlying aquifers. In oil systems, produced fluids can consist of a mixture of oil, water and gas. Noble gases are typically measured in the gas phase; however, it is not always possible to collect gases and therefore produced fluids (which are water, oil, and gas mixtures) must be analyzed. We outline a new technique to separate and analyze noble gases in multiphase hydrocarbon-associated fluid samples. An offline double capillary method has been developed to quantitatively isolate noble gases into a transfer vessel, while effectively removing all water, oil, and less volatile hydrocarbons. The gases are then cleaned and analyzed using standard techniques. Air-saturated water reference materials (n = 24) were analyzed and results show a method reproducibility of 2.9% for 4He, 3.8% for 20Ne, 4.5% for 36Ar, 5.3% for 84Kr, and 5.7% for 132Xe. This new technique was used to measure the noble gas isotopic compositions in six produced fluid samples from the Fruitvale Oil Field, Bakersfield, California

    The origin of high helium concentrations in the gas fields of southwestern Tanzania

    No full text
    Volatile elements are concentrated at Earth's surface, forming a rich atmosphere and oceans which enabled the eventual emergence of life. However, volatiles are also abundant in solid Earth reservoirs, such as the crust and mantle, and these reservoirs play a key role in moderating volatile movement throughout the planet. Continental cratons represent a potentially large, yet under-constrained volatile reservoir. When cratonic regions are catastrophically disrupted by large volcanic and/or rifting events, they release massive amounts of volatiles into Earth's atmosphere on geologically-abrupt timescales (e.g., Lowenstern et al., 2014; Muirhead et al., 2020). Here, we report gas data (He-Ne-N2-Ar-CO2) from seeps along the flanks of the Tanzanian craton, within the western branch of the East African Rift System (EARS) - a region where the stable continental craton is actively being broken apart by rifting and simultaneously heated by plume-induced volcanism. Bulk gas and noble gas isotopic data are reported in seeps from three regions: 1) the Rukwa Rift Basin (RRB), 2) the Lupa Hydrothermal System (LHS) and 3) the Rungwe Volcanic Province (RVP). Seep gases from the RRB are dominantly comprised of N2 and He, with >90% N2 concentrations, high 4He concentrations (2.4–6.9%) and radiogenic He isotopes (0.16–0.20 RA). Seeps in the LHS - located between RRB and RVP - are characterized by little-to-no N2, high CO2 contents (72–84%), relatively low He contents (0.008–0.15%), and higher 3He/4He (0.95–0.99 RA). RVP gases have high CO2 (78%) and low 4He (0.0003%) and more mantle-like He isotopes (3.27–4.00 RA) consistent with previous findings (Pik et al., 2006; Barry et al., 2013). All neon isotopes can be explained by mixing between air, high O/F crust and depleted Mid Oceanic Ridge Basalt (MORB) mantle-like signatures. RVP neon isotope seep data potentially suggest a solar-like deep mantle contribution, consistent with findings in rocks from the area (Halldórsson et al., 2014), however we note that this signal is difficult to discern from mass dependent fractionation (MDF). The largest 40Ar/36Ar anomalies occur in RRB, with resolvable excess 40Ar derived from radiogenic production in the crust. Using a noble gas solubility model, we calculate volumetric gas to water ratios (Vg/Vw) and show that Vg/Vw values are low for RRB (0.1), consistent with longer migration distances, whereas Vg/Vw are higher for LHS (Vg/Vw = 0.1–10) and RVP (Vg/Vw = 3–12), suggesting a more direct conduit for volatiles from source to surface. In summary, these data demonstrate interaction between two distinct helium sources, one of which is crustal in origin (most prominent in RRB) and the other being mantle-derived (enriched in RVP). The extent of mixing between the two is shown to be influenced by proximity to rift-related fault structures, groundwater interaction and magmatic heat

    Basin architecture controls on the chemical evolution and He-4 distribution of groundwater in the Paradox Basin

    No full text
    Fluids such as 4He, H2, CO2 and hydrocarbons accumulate within Earth's crust. Crustal reservoirs also have potential to store anthropogenic waste (e.g., CO2, spent nuclear fuel). Understanding fluid migration and how this is impacted by basin stratigraphy and evolution is key to exploiting fluid accumulations and identifying viable storage sites. Noble gases are powerful tracers of fluid migration and chemical evolution, as they are inert and only fractionate by physical processes. The distribution of 4He, in particular, is an important tool for understanding diffusion within basins and for groundwater dating. Here, we report noble gas isotope and abundance data from 36 wells across the Paradox Basin, Colorado Plateau, USA, which has abundant hydrocarbon, 4He and CO2 accumulations. Both groundwater and hydrocarbon samples were collected from 7 stratigraphic units, including within, above and below the Paradox Formation (P.Fm) evaporites. Air-corrected helium isotope ratios (0.0046 - 0.127 RA) are consistent with radiogenic overprinting of predominantly groundwater-derived noble gases. The highest radiogenic noble gas concentrations are found in formations below the P.Fm. Atmosphere-derived noble gas signatures are consistent with meteoric recharge and multi-phase interactions both above and below the P.Fm, with greater groundwater-gas interactions in the shallower formations. Vertical diffusion models, used to reconstruct observed groundwater helium concentrations, show the P.Fm evaporite layer to be effectively impermeable to helium diffusion and a regional barrier for mobile elements but, similar to other basins, a basement 4He flux is required to accumulate the 4He concentrations observed beneath the P.Fm. The verification that evaporites are regionally impermeable to diffusion, of even the most diffusive elements, is important for sub-salt helium and hydrogen exploration and storage, and a critical parameter in determining 4He-derived mean groundwater ages. This is critical to understanding the role of basin stratigraphy and deformation on fluid flow and gas accumulation

    Tracing enhanced oil recovery signatures in casing gases from the Lost Hills oil field using noble gases

    No full text
    Enhanced oil recovery (EOR) and hydraulic fracturing practices are commonly used methods to improve hydrocarbon extraction efficiency; however, the environmental effects of such practices remain poorly understood. EOR is particularly prevalent in oil fields throughout California where water resources are in high demand and the disposal of large volumes of produced water may affect groundwater quality. Consequently, it is essential to better understand the fate of injected (EOR) fluids in California, and other subsurface petroleum systems, as well as any potential effect on nearby aquifer systems. Noble gases can be used as tracers to understand hydrocarbon generation, migration, and storage conditions, as well as the relative proportions of oil and water present in the subsurface. In addition, a noble gas signature diagnostic of injected (EOR) fluids can be readily identified. We report noble gas isotope and concentration data in casing gases from oil production wells in the Lost Hills oil field, northwest of Bakersfield, California, and injectate gas data from the Fruitvale oil field, located within the city of Bakersfield. Casing and injectate gas data are used to: 1) establish pristine hydrocarbon noble-gas signatures and the processes controlling noble gas distributions, 2) characterize the noble gas signature of injectate fluids, 3) trace injectate fluids in the subsurface, and 4) construct a model to estimate EOR efficiency. Noble gas results range from pristine to significantly modified by EOR, and can be best explained using a solubility exchange model between oil and connate/formation fluids, followed by gas exsolution upon production. This model is sensitive to oil–water interaction during hydrocarbon expulsion, migration, and storage at reservoir conditions, as well as any subsequent modification by EOR
    corecore