16 research outputs found
Optimal point of insertion of the needle in neuraxial blockade using a midline approach: study in a geometrical model
Mark Vogt,1 Dennis J van Gerwen,2 John J van den Dobbelsteen,2 Martin Hagenaars,3 1Department of Anesthesiology, Erasmus MC Sophia Children Hospital, Rotterdam, the Netherlands; 2Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands; 3Department of Anesthesiology, Canisius Wilhelmina Ziekenhuis, Nijmegen, the Netherlands Abstract: Performance of neuraxial blockade using a midline approach can be technically difficult. It is therefore important to optimize factors that are under the influence of the clinician performing the procedure. One of these factors might be the chosen point of insertion of the needle. Surprisingly few data exist on where between the tips of two adjacent spinous processes the needle should be introduced. A geometrical model was adopted to gain more insight into this issue. Spinous processes were represented by parallelograms. The length, the steepness relative to the skin, and the distance between the parallelograms were varied. The influence of the chosen point of insertion of the needle on the range of angles at which the epidural and subarachnoid space could be reached was studied. The optimal point of insertion was defined as the point where this range is the widest. The geometrical model clearly demonstrated, that the range of angles at which the epidural or subarachnoid space can be reached, is dependent on the point of insertion between the tips of the adjacent spinous processes. The steeper the spinous processes run, the more cranial the point of insertion should be. Assuming that the model is representative for patients, the performance of neuraxial blockade using a midline approach might be improved by choosing the optimal point of insertion. Keywords: neuraxial blockade, midline approach, optimal point of insertion, geometrical mode
Wasp-inspired needle insertion with low net push force
This paper outlines the development of a four-part needle prototype inspired by the ovipositor of parasitic wasps. In the wasp ovipositor, three longitudinal segments called valves move reciprocally to gain depth in the substrate. It has been suggested that serrations located along the wasp ovipositor induce a friction difference between moving and anchoring valves that is needed for this reciprocal motion. Such an anchoring mechanism may not be desired in a medical setting, as serrations can induce tissue damage. Our aim was to investigate whether a multipart needle can penetrate tissue phantom material with near-zero net push force while using needle parts devoid of surface gripping textures or serrations. Accordingly, a four-part needle prototype was developed and tested in gelatine substrates. The performance of the prototype was assessed in terms of the degree of slipping of the needle with respect to the gelatine, with less slip implying better performance. Slip decreased with decreasing gelatine concentration and increasing offset between the needle parts. Motion through gelatine was achieved with a maximum push force of 0.035 N. This study indicates the possibility of needle propagation into a substrate with low net push force and without the need of serrations on the needle surface.Accepted Author ManuscriptMedical Instruments & Bio-Inspired Technolog
Modeling and experimental evaluation of a rotary peristaltic magnetorheological fluid device with low off-state torque for haptic interfaces
This article presents a novel rotary magnetorheological fluid device with inherently low off-state torque. The working principle of the device is similar to peristaltic pumps except the fluid remains inside the device and circulates continuously. Unlike other continuous rotation magnetorheological fluid devices, which operate in shear mode, the proposed device works in pressure driven flow mode. A proof of concept prototype with arbitrary dimensions is built and experimentally evaluated. Measured off-state torque is as low as 20 N.mm. Analytical model of the resistant torque and finite element simulations of the magnetic circuit are presented and validated with the experimental results. Using these models, an optimal device with similar off-state characteristics can be designed to fulfill specific requirements of size, weight, power and on-state torque. The proposed concept is promising especially for use in high precision haptic interfaces that require stability and transparency at the lower end of force spectrum. © 2018, The Brazilian Society of Mechanical Sciences and Engineering