20 research outputs found
Over 75% incident-photon-to-current efficiency without solid electrodes.
The efficiency of photoelectrochemical reactions is conventionally defined in terms of the ratio between the current responses arising from the collection of carriers at electrical contacts and the incident photon flux at a given wavelength, i.e. the incident-photon-to-current-efficiency (IPCE). IPCE values are determined by a variety of factors such as the absorption constant of the active layer, bulk and surface recombination of photogenerated carriers, as well as their characteristic diffusion length. These parameters are particularly crucial in nanostructured photoelectrodes, which commonly display low carrier mobility. In this article, we examine the photoelectrochemical responses of a mesoporous TiO2 film in which the IPCE is enhanced by fast extraction of carriers via chemical reactions. TiO2 films are spontaneously formed by destabilisation of colloidal particles at the polarisable interface between two immiscible electrolyte solutions. The photocurrent arises from hole-transfer to redox species confined to the organic electrolyte, which is coupled to the transfer of electrons to oxygen in the aqueous electrolyte. The dynamic photocurrent responses demonstrate that no coupled ion transfer is involved in the process. The interplay of different interfacial length scales, molecularly sharp liquid/liquid boundary and mesoporous TiO2 film, promotes efficiencies above 75% (without correction for reflection losses). This is a significant step change in values reported for these interfaces (below 1%), which are usually limited to sub-monolayer coverage of photoactive molecular or nanoscopic materials
Diabetes-related excess mortality in Mexico: a comparative analysis of National Death Registries between 2017-2019 and 2020
OBJECTIVE: To estimate diabetes-related mortality in Mexico in 2020 compared with 2017-2019 after the onset of the coronavirus disease 2019 (COVID-19) pandemic. RESEARCH DESIGN AND METHODS: This retrospective, state-level study used national death registries of Mexican adults aged â„20 years for the 2017-2020 period. Diabetes-related death was defined using ICD-10 codes listing diabetes as the primary cause of death, excluding certificates with COVID-19 as the primary cause of death. Spatial and negative binomial regression models were used to characterize the geographic distribution and sociodemographic and epidemiologic correlates of diabetes-related excess mortality, estimated as increases in diabetes-related mortality in 2020 compared with average 2017-2019 rates. RESULTS: We identified 148,437 diabetes-related deaths in 2020 (177 per 100,000 inhabitants) vs. an average of 101,496 deaths in 2017-2019 (125 per 100,000 inhabitants). In-hospital diabetes-related deaths decreased by 17.8% in 2020 versus 2017-2019, whereas out-of-hospital deaths increased by 89.4%. Most deaths were attributable to type 2 diabetes (130 per 100,000 inhabitants). Compared with 2018-2019 data, hyperglycemic hyperosmolar state and diabetic ketoacidosis were the two contributing causes with the highest increase in mortality (128% and 116% increase, respectively). Diabetes-related excess mortality clustered in southern Mexico and was highest in states with higher social lag, rates of COVID-19 hospitalization, and prevalence of HbA1c â„7.5%. CONCLUSIONS: Diabetes-related deaths increased among Mexican adults by 41.6% in 2020 after the onset of the COVID-19 pandemic, occurred disproportionately outside the hospital, and were largely attributable to type 2 diabetes and hyperglycemic emergencies. Disruptions in diabetes care and strained hospital capacity may have contributed to diabetes-related excess mortality in Mexico during 2020
Crystal structure and defects visualization of Cu<inf>2</inf>ZnSnS<inf>4</inf> nanoparticles employing transmission electron microscopy and electron diffraction
A detailed analysis of the structure of Cu2ZnSnS4 (CZTS) nanocrystals synthesized by hot-injection in the presence of oleylamine is provided employing high resolution TEM, selected area electron diffraction (SAED) and convergent beam electron diffraction (CBED). The nanostructures were investigated as-grown and after vacuum thermal treatment at 550 °C. As-grown materials consisted of polycrystalline particles with an average size of 7 ± 3 nm, which grow an average size of 53 ± 13 nm after the vacuum annealing step. This thermal treatment allows investigating the initial stages of high quality film growth required in photovoltaic devices. Sets of SAED and CBED patterns, where individual crystals after annealing were viewed down different prominent zone axes, enabled us to reveal the presence of weak reflections due to cation ordering, and confirm a tetragonal unit cell consistent with either the kesterite or stannite structure. We demonstrate how these approaches enable to distinguish CZTS from secondary phases such as ZnS. Structure defects of partially annealed CZTS crystals were also investigated using bright and dark field images taken in 2-beam diffraction conditions as well as by high resolution lattice imaging. The material exhibited dislocations, along with lamellar twins and stacking faults characterized by local hexagonal structure on {112} planes. High resolution TEM images showed preferential growth on {112} planes during vacuum annealing, which is consistent with X-ray diffraction patterns. These studies provide key information on nanoscale crystal defects which may have important consequence on the performance of CZTS photovoltaic devices
Structure and band edge energy of highly luminescent CdSe <inf>1-x</inf>Te<inf>x</inf> alloyed quantum dots
CdSe1-xTex quantum dot (QD) alloys are characterized by high luminescence quantum yields and a strong band gap bowing as a function of the Se:Te ratio, featuring longer emission wavelengths than CdTe or CdSe dots of identical size. In this contribution, these properties are rationalized by examining the structure and band edge energy of CdSe1-xTex as functions of x. The QDs were synthesized employing the "hot- injection" method, in the presence of either trioctylphosphine oxide (TOPO) or octadecene (ODE) as the Cd precursor solvent. Elementary analysis of the QDs indicated that TOPO plays a crucial role in tuning the content of Se in the alloys, as only traces of this element were found when using ODE. Detailed studies based on X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) revealed a high degree of complexity in the structure of the alloyed dots. The analysis concluded that the structure of the QDs was essentially wurtzite, although features associated with zinc blende can be seen due to the presence of stacking faults and to a small population of nanocrystals with cubic structure. More importantly, these studies reveal a nonlinear expansion of the effective lattice constant with increasing Te content. The valence band edge energy of the alloys in solution was estimated from the first oxidation potential measured by linear sweep voltammetry at Au microelectrodes. The results show that the valence band edge exhibits a very weak dependence on x for values below 0.5, indicating that the decrease in the optical band gap is mainly linked to a decrease in the conduction band edge energy. For x > 0.5, the conduction and valence band edges shift to higher values with an overall increase in the band gap. The experimental trends show, for the first time, that the characteristic red shift of the band gap with low to intermediate Te content is determined by relaxation of the lattice constant, whereas the contribution arising from the change in anion electronegativity becomes predominant for x > 0.5. © 2013 American Chemical Society
Initial stages in the formation of Cu<inf>2</inf>ZnSn(S,Se)<inf>4</inf> nanoparticles
In the beginning: Intermediate species generated in the synthesis of Cu2ZnSn(S,Se)4 nanoparticles (see figure) in oleylamine have been identified. The solvent plays a central role in the reaction mechanism, determining the composition of the nanostructures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Rapid phosphine-free synthesis of CdSe quantum dots: Promoting the generation of Se precursors using a radical initiator
The replacement of phosphine containing compounds in the synthesis of II-VI quantum dots (QDs) via the 'hot-injection' method has received considerable attention in recent years, in particular toward scaling-up production. A key bottleneck in current approaches is the poor solubility of elemental Se in solvents such as 1-octadecene (1-ODE) or oleylamine requiring a heating temperature of 200 °C for several hours, or the introduction of additives such as alkylthiols or NaBH4, or replacement by SeO2. In the present work, we elucidate the fundamental steps in the dissolution of elemental Se in 1-ODE and oleylamine with the view of facilitating the large-scale synthesis of CdSe QDs. The main organoselenium species generated during the solubilisation of elemental Se in 1-ODE and oleylamine were identified by 1D and 2D NMR spectroscopy (1H, 13C and 77Se). Experimental evidence suggests that the rate determining step is the formation of Se radicals, via homolytic cleavage of the Se-Se bond, that attack the allylic proton in 1-ODE and oleylamine. Plausible reaction pathways in both systems are proposed. Finally, we demonstrate that the radical-mediated solubilisation of Se can be significantly accelerated by the addition of azobisisobutyronitrile (AIBN), a common radical initiator used in the polymer industry. In this way, a highly concentrated Se precursor was prepared. The "hot-injection" of the Se precursor into CdO containing 1-ODE solution leads to the formation of highly luminescent CdSe QDs with a well-defined cubic structure. © 2014 the Partner Organisations
Canopy light heterogeneity drives leaf anatomical, eco-physiological, and photosynthetic changes in olive trees grown in a high-density plantation
15 p., 8 fig., 2 tab. Available online 26 October 2014. The definitive version is available at: http://link.springer.com/article/10.1007/s11120-014-0052-2In the field, leaves may face very different light intensities within the tree canopy. Leaves usually respond with light-induced morphological and photosynthetic changes, in a phenomenon known as phenotypic plasticity. Canopy light distribution, leaf anatomy, gas exchange, chlorophyll fluorescence, and pigment composition were investigated in an olive (Olea europaea, cvs. Arbequina and Arbosana) orchard planted with a high-density system (1,250 trees haâ1). Sampling was made from three canopy zones: a lower canopy (2 m). Light interception decreased significantly in the lower canopy when compared to the central and top ones. Leaf angle increased and photosynthetic rates and non-photochemical quenching (NPQ) decreased significantly and progressively from the upper canopy to the central and the lower canopies. The largest leaf areas were found in the lower canopy, especially in the cultivar Arbequina. The palisade and spongy parenchyma were reduced in thickness in the lower canopy when compared to the upper one, in the former due to a decrease in the number of cell layers from three to two (clearly distinguishable in the light and fluorescence microscopy images). In both cultivars, the concentration of violaxanthin-cycle pigments and ÎČ-carotene was higher in the upper than in the lower canopy. Furthermore, the de-epoxidized forms zeaxanthin and antheraxanthin increased significantly in those leaves from the upper canopy, in parallel to the NPQ increases. In conclusion, olive leaves react with morphological and photosynthetic changes to within-crown light gradients. These results strengthen the idea of olive trees as âmodular organismsâ that adjust the modules morphology and physiology in response to light intensity.This work was supported by the Spanish Agency
of International Cooperation for Development (AECID) Project AP/040397/11 and the AragĂłn Government (A03 Research Group)Peer reviewe