2,171 research outputs found

    When the heart rules the head: ischaemic stroke and intracerebral haemorrhage complicating infective endocarditis

    Get PDF
    Sir William Osler meticulously described the clinical manifestations of infective endocarditis in 1885, concluding that: 'few diseases present greater difficulties in the way of diagnosis … which in many cases are practically insurmountable'. Even with modern investigation techniques, diagnosing infective endocarditis can be hugely challenging, yet is critically important in patients presenting with stroke (both cerebral infarction and intracranial haemorrhage), its commonest neurological complication. In ischaemic stroke, intravenous thrombolysis carries an unacceptably high risk of intracranial haemorrhage, while in intracerebral haemorrhage, mycotic aneurysms require urgent treatment to avoid rebleeding, and in all cases, prompt treatment with antibiotics and valve surgery may be life-saving. Here, we describe typical presentations of ischaemic stroke and intracerebral haemorrhage caused by infective endocarditis. We review the diagnostic challenges, the importance of rapid diagnosis, treatment options and controversies

    Aseptic meningitis in a patient taking etanercept for rheumatoid arthritis: a case report

    Get PDF
    Background \ud We report a case of a 53 year old lady recently commenced on etanercept, an anti-TNF (tumour necrosis factor) therapy for rheumatoid arthritis presenting with \ud confusion, pyrexia and an erythematous rash. \ud \ud Case presentation \ud A lumbar puncture was highly suggestive of bacterial meningitis, but CSF cultures produced no growth, and polymerase chain reactions (PCR) for all previously reported bacterial, fungal and viral causes of meningitis were negative. \ud \ud Conclusions \ud This case report describes aseptic meningitis as a previously unreported complication of etanercept therapy, and serves as a reminder of the rare but potentially lifethreatening risk of serious infections in patients taking anti-TNF therapy for a variety of conditions

    KCC1 Activation protects Mice from the Development of Experimental Cerebral Malaria.

    Full text link
    Plasmodium falciparum malaria causes half a million deaths per year, with up to 9% of this mortality caused by cerebral malaria (CM). One of the major processes contributing to the development of CM is an excess of host inflammatory cytokines. Recently K+ signaling has emerged as an important mediator of the inflammatory response to infection; we therefore investigated whether mice carrying an ENU induced activation of the electroneutral K+ channel KCC1 had an altered response to Plasmodium berghei. Here we show that Kcc1M935K/M935K mice are protected from the development of experimental cerebral malaria, and that this protection is associated with an increased CD4+ and TNFa response. This is the first description of a K+ channel affecting the development of experimental cerebral malaria

    Bone marrow transplantation corrects haemolytic anaemia in a novel ENU mutagenesis mouse model of TPI deficiency.

    Full text link
    In this study, we performed a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice to identify novel genes or alleles that regulate erythropoiesis. Here, we describe a recessive mouse strain, called RBC19, harbouring a point mutation within the housekeeping gene, Tpi1, which encodes the glycolysis enzyme, triosephosphate isomerase (TPI). A serine in place of a phenylalanine at amino acid 57 severely diminishes enzyme activity in red blood cells and other tissues, resulting in a macrocytic haemolytic phenotype in homozygous mice, which closely resembles human TPI deficiency. A rescue study was performed using bone marrow transplantation of wild-type donor cells, which restored all haematological parameters and increased red blood cell enzyme function to wild-type levels after 7 weeks. This is the first study performed in a mammalian model of TPI deficiency, demonstrating that the haematological phenotype can be rescued

    Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    Get PDF
    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience

    A novel role for Lyl1 in primitive erythropoiesis

    Full text link
    © 2018. Published by The Company of Biologists Ltd. Stem cell leukemia (Scl or Tal1) and lymphoblastic leukemia 1 (Lyl1) encode highly related members of the basic helix-loop-helix family of transcription factors that are co-expressed in the erythroid lineage. Previous studies have suggested that Scl is essential for primitive erythropoiesis. However, analysis of single-cell RNA-seq data of early embryos showed that primitive erythroid cells express both Scl and Lyl1. Therefore, to determine whether Lyl1 can function in primitive erythropoiesis, we crossed conditional Scl knockout mice with mice expressing a Cre recombinase under the control of the Epo receptor, active in erythroid progenitors. Embryos with 20% expression of Scl from E9.5 survived to adulthood. However, mice with reduced expression of Scl and absence of Lyl1 (double knockout; DKO) died at E10.5 because of progressive loss of erythropoiesis. Gene expression profiling of DKO yolk sacs revealed loss of Gata1 and many of the known target genes of the SCL-GATA1 complex. ChIP-seq analyses in a human erythroleukemia cell line showed that LYL1 exclusively bound a small subset of SCL targets including GATA1. Together, these data show for the first time that Lyl1 can maintain primitive erythropoiesis

    Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in acute lung injury to reduce pulmonary dysfunction (HARP-2) trial : study protocol for a randomized controlled trial

    Get PDF
    Acute lung injury (ALI) is a common devastating clinical syndrome characterized by life-threatening respiratory failure requiring mechanical ventilation and multiple organ failure. There are in vitro, animal studies and pre-clinical data suggesting that statins may be beneficial in ALI. The Hydroxymethylglutaryl-CoA reductase inhibition with simvastatin in Acute lung injury to Reduce Pulmonary dysfunction (HARP-2) trial is a multicenter, prospective, randomized, allocation concealed, double-blind, placebo-controlled clinical trial which aims to test the hypothesis that treatment with simvastatin will improve clinical outcomes in patients with ALI
    corecore