193 research outputs found

    Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity

    Get PDF
    The ability of Mycobacterium tuberculosis to form serpentine cords is intrinsically related to its virulence, but specifically how M. tuberculosis cording contributes to pathogenesis remains obscure. Here, we show that several M. tuberculosis clinical isolates form intracellular cords in primary human lymphatic endothelial cells (hLECs) in vitro and in the lymph nodes of patients with tuberculosis. We identified via RNA-Seq a transcriptional program that activated, in infected-hLECs, cell survival and cytosolic surveillance of pathogens pathways. Consistent with this, cytosolic access was required for intracellular M. tuberculosis cording. Mycobacteria lacking ESX-1 type VII secretion system or phthiocerol dimycocerosates expression, which failed to access the cytosol, were indeed unable to form cords within hLECs. Finally, we show that M. tuberculosis cording is a size-dependent mechanism used by the pathogen to avoid its recognition by cytosolic sensors and evade either resting or IFN-γ–induced hLEC immunity. These results explain the long-standing association between M. tuberculosis cording and virulence and how virulent mycobacteria use intracellular cording as strategy to successfully adapt and persist in the lymphatic tracts

    Cardiac Troponin Thresholds and Kinetics to Differentiate Myocardial Injury and Myocardial Infarction.

    Get PDF
    BACKGROUND: Although the 99th percentile is the recommended diagnostic threshold for myocardial infarction, some guidelines also advocate the use of higher troponin thresholds to rule in myocardial infarction at presentation. It is unclear whether the magnitude or change in troponin concentration can differentiate causes of myocardial injury and infarction in practice. METHODS: In a secondary analysis of a multicenter randomized controlled trial, we identified 46 092 consecutive patients presenting with suspected acute coronary syndrome without ST-segment-elevation myocardial infarction. High-sensitivity cardiac troponin I concentrations at presentation and on serial testing were compared between patients with myocardial injury and infarction. The positive predictive value and specificity were determined at the sex-specific 99th percentile upper reference limit and rule-in thresholds of 64 ng/L and 5-fold of the upper reference limit for a diagnosis of type 1 myocardial infarction. RESULTS: Troponin was above the 99th percentile in 8188 patients (18%). The diagnosis was type 1 or type 2 myocardial infarction in 50% and 14% and acute or chronic myocardial injury in 20% and 16%, respectively. Troponin concentrations were similar at presentation in type 1 (median [25th-75th percentile] 91 [30-493] ng/L) and type 2 (50 [22-147] ng/L) myocardial infarction and in acute (50 [26-134] ng/L) and chronic (51 [31-130] ng/L) myocardial injury. The 99th percentile and rule-in thresholds of 64 ng/L and 5-fold upper reference limit gave a positive predictive value of 57% (95% CI, 56%-58%), 59% (58%-61%), and 62% (60%-64%) and a specificity of 96% (96%-96%), 96% (96%-96%), and 98% (97%-98%), respectively. The absolute, relative, and rate of change in troponin concentration were highest in patients with type 1 myocardial infarction (P<0.001 for all). Discrimination improved when troponin concentration and change in troponin were combined compared with troponin concentration at presentation alone (area under the curve, 0.661 [0.642-0.680] versus 0.613 [0.594-0.633]). CONCLUSIONS: Although we observed important differences in the kinetics, cardiac troponin concentrations at presentation are insufficient to distinguish type 1 myocardial infarction from other causes of myocardial injury or infarction in practice and should not guide management decisions in isolation. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT01852123

    A modeling and simulation study of siderophore mediated antagonism in dual-species biofilms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several bacterial species possess chelation mechanisms that allow them to scavenge iron from the environment under conditions of limitation. To this end they produce siderophores that bind the iron and make it available to the cells later on, while rendering it unavailable to other organisms. The phenomenon of siderophore mediated antagonism has been studied to some extent for suspended populations where it was found that the chelation ability provides a growth advantage over species that do not have this possibility. However, most bacteria live in biofilm communities. In particular <it>Pseudomonas fluorescens </it>and <it>Pseudomonas putida</it>, the species that have been used in most experimental studies of the phenomenon, are known to be prolific biofilm formers, but only very few experimental studies of iron chelation have been published to date for the biofilm setting. We address this question in the present study.</p> <p>Methods</p> <p>Based on a previously introduced model of iron chelation and an existing model of biofilm growth we formulate a model for iron chelation and competition in dual species biofilms. This leads to a highly nonlinear system of partial differential equations which is studied in computer simulation experiments.</p> <p>Conclusions</p> <p>(i) Siderophore production can give a growth advantage also in the biofilm setting, (ii) diffusion facilitates and emphasizes this growth advantage, (iii) the magnitude of the growth advantage can also depend on the initial inoculation of the substratum, (iv) a new mass transfer boundary condition was derived that allows to a priori control the expect the expected average thickness of the biofilm in terms of the model parameters.</p

    Self-Harm Intervention: Family Therapy (SHIFT), a study protocol for a randomised controlled trial of family therapy versus treatment as usual for young people seen after a second or subsequent episode of self-harm

    Get PDF
    Background: Self-harm is common in the community with a lifetime prevalence of 13 %. It is associated with an elevated risk of overall mortality and suicide. People who harm themselves are high users of public services. Estimates of the 1-year risk of repetition vary between 5 and 15 % per year. Currently, limited evidence exists on the effectiveness of clinical interventions for young people who engage in self-harm. Recent reviews have failed to demonstrate any effect on reducing repetition of self-harm among adolescents receiving a range of treatment approaches. Family factors are particularly important risk factors associated with fatal and non-fatal self-harm among children and adolescents. Family therapy focuses on the relationships, roles and communication patterns between family members, but there have been relatively few studies of specifically family-focused interventions with this population. The Self-Harm Intervention: Family Therapy (SHIFT) Trial was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme (grant no. 07/33/01) following a commissioned call for this research. Methods/Design: SHIFT is a pragmatic, phase III, multicentre, individually randomised, controlled trial comparing Family Therapy (FT) with treatment as usual (TAU) for adolescents aged 11 to 17 who have engaged in at least two episodes of self-harm. Both therapeutic interventions were delivered within the National Health Service (NHS) Child and Adolescent Mental Health Services (CAMHS) in England. Participants and therapists were, of necessity, aware of treatment allocation, but the researchers were blind to the allocations to allow unbiased collection of follow-up data. Primary outcome data (repetition of self-harm leading to hospital attendance 18 months post-randomisation) were collected from the Health and Social Care Information Centre (HSCIC), augmented by directed searches of medical records at Acute Trusts. Secondary outcome data (including suicidal intent, depression, hopelessness and health economics) were collected at 12 and 18 months post-randomisation via researcher-participant interviews and by post at 3 and 6 months. Discussion: SHIFT will provide a well-powered evaluation of the clinical and cost effectiveness of Family Therapy for young people who have self-harmed on more than one occasion. The study will be reported in 2016, and the results will inform clinical practice thereafter

    Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary

    Get PDF
    Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO2 compared with biomes with similar fire regimes in other continents

    Basonuclin-Null Mutation Impairs Homeostasis and Wound Repair in Mouse Corneal Epithelium

    Get PDF
    At least two cellular processes are required for corneal epithelium homeostasis and wound repair: cell proliferation and cell-cell adhesion. These processes are delicately balanced to ensure the maintenance of normal epithelial function. During wound healing, these processes must be reprogrammed in coordination to achieve a rapid re-epithelialization. Basonuclin (Bnc1) is a cell-type-specific transcription factor expressed mainly in the proliferative keratinocytes of stratified epithelium (e.g., corneal epithelium, epidermis and esophageal epithelium) and the gametogenic cells in testis and ovary. Our previous work suggested that basonuclin could regulate transcription of ribosomal RNA genes (rDNA) and genes involved in chromatin structure, transcription regulation, cell-cell junction/communication, ion-channels and intracelllular transportation. However, basonuclin's role in keratinocytes has not been demonstrated in vivo. Here we show that basonuclin-null mutation disrupts corneal epithelium homeostasis and delays wound healing by impairing cell proliferation. In basonuclin-null cornea epithelium, RNA polymerase I (Pol I) transcription is perturbed. This perturbation is unique because it affects transcripts from a subset of rDNA. Basonuclin-null mutation also perturbs RNA polymerase II (Pol II) transcripts from genes encoding chromatin structure proteins histone 3 and HMG2, transcription factor Gli2, gap-junction protein connexin 43 and adheren E-cadherin. In most cases, a concerted change in mRNA and protein level is observed. However, for E-cadherin, despite a notable increase in its mRNA level, its protein level was reduced. In conclusion, our study establishes basonuclin as a regulator of corneal epithelium homeostasis and maintenance. Basonuclin likely coordinates functions of a subset of ribosomal RNA genes (rDNA) and a group of protein coding genes in cellular processes critical for the regulation of cell proliferation

    Inhibition of WEE1 Is Effective in TP53- and RAS-Mutant Metastatic Colorectal Cancer: A Randomized Trial (FOCUS4-C) Comparing Adavosertib (AZD1775) With Active Monitoring

    Get PDF
    PURPOSE Outcomes in RAS-mutant metastatic colorectal cancer (mCRC) remain poor and patients have limited therapeutic options. Adavosertib is the first small-molecule inhibitor of WEE1 kinase. We hypothesized that aberrations in DNA replication seen in mCRC with both RAS and TP53 mutations would sensitize tumors to WEE1 inhibition. METHODS Patients with newly diagnosed mCRC were registered into FOCUS4 and tested for TP53 and RAS mutations. Those with both mutations who were stable or responding after 16 weeks of chemotherapy were randomly assigned 2:1 between adavosertib and active monitoring (AM). Adavosertib (250 mg or 300 mg) was taken orally once on days 1-5 and days 8-12 of a 3-week cycle. The primary outcome was progression-free survival (PFS), with a target hazard ratio (HR) of 0.5 and 80% power with a one-sided 0.025 significance level. RESULTS FOCUS4-C was conducted between April 2017 and Mar 2020 during which time 718 patients were registered; 247 (34%) were RAS/TP53-mutant. Sixty-nine patients were randomly assigned from 25 UK hospitals (adavosertib = 44; AM = 25). Adavosertib was associated with a PFS improvement over AM (median 3.61 v 1.87 months; HR = 0.35; 95% CI, 0.18 to 0.68; P = .0022). Overall survival (OS) was not improved with adavosertib versus AM (median 14.0 v 12.8 months; HR = 0.92; 95% CI, 0.44 to 1.94; P = .93). In prespecified subgroup analysis, adavosertib activity was greater in left-sided tumors (HR = 0.24; 95% CI, 0.11 to 0.51), versus right-sided (HR = 1.02; 95% CI, 0.41 to 2.56; interaction P = .043). Adavosertib was well-tolerated; grade 3 toxicities were diarrhea (9%), nausea (5%), and neutropenia (7%). CONCLUSION In this phase II randomized trial, adavosertib improved PFS compared with AM and demonstrates potential as a well-tolerated therapy for RAS/TP53-mutant mCRC. Further testing is required in this sizable population of unmet need

    Genome-Wide Fitness and Expression Profiling Implicate Mga2 in Adaptation to Hydrogen Peroxide

    Get PDF
    Caloric restriction extends lifespan, an effect once thought to involve attenuation of reactive oxygen species (ROS) generated by aerobic metabolism. However, recent evidence suggests that caloric restriction may in fact raise ROS levels, which in turn provides protection from acute doses of oxidant through a process called adaptation. To shed light on the molecular mechanisms of adaptation, we designed a series of genome-wide deletion fitness and mRNA expression screens to identify genes involved in adaptation to hydrogen peroxide. Combined with known transcriptional interactions, the integrated data implicate Yap1 and Skn7 as central transcription factors of both the adaptive and acute oxidative responses. They also identify the transcription factors Mga2 and Rox1 as active exclusively in the adaptive response and show that Mga2 is essential for adaptation. These findings are striking because Mga2 and Rox1 have been thought to control the response to hypoxic, not oxidative, conditions. Expression profiling of mga2Δ and rox1Δ knockouts shows that these factors most strongly regulate targets in ergosterol, fatty-acid, and zinc metabolic pathways. Direct quantitation of ergosterol reveals that its basal concentration indeed depends on Mga2, but that Mga2 is not required for the decrease in ergosterol observed during adaptation
    corecore