529 research outputs found

    Registration and analysis of multispectral images acquired during uterine transplantation surgery

    Get PDF
    Organ transplant success is dependent on blood supply health. A multispectral imaging laparoscope has been used to monitor tissue oxygenation changes during a rabbit uterine transplant. A feature tracking algorithm was used to compensate for movement. © OSA 2012

    Multispectral Imaging of Organ Viability during Uterine Transplantation Surgery

    Get PDF
    Uterine transplantation surgery has been proposed as a treatment for permanent absolute uterine factor infertility (AUFI) in the case of loss of the uterus. Due to the complexity of the vasculature correct reanastomosis of the blood supply during transplantation surgery is a crucial step to ensure reperfusion and viability of the organ. While techniques such as fluorescent dye imaging have been proposed to visualise perfusion there is no gold standard for intraoperative visualisation of tissue oxygenation. In this paper results from a liquid crystal tuneable filter (LCTF)-based multispectral imaging (MSI) laparoscope are described. The system was used to monitor uterine oxygen saturation (SaO) before and after transplantation. Results from surgeries on two animal models (rabbits and sheep) are presented. A feature-based registration algorithm was used to correct for misalignment induced by breathing or peristalsis in the tissues of interest prior to analysis. An absorption spectrum was calculated at each spatial pixel location using reflectance data from a reference standard, and the relative contributions from oxy- and deoxyhaemoglobin were calculated using a least squares regression algorithm with non-negativity constraints. Results acquired during animal surgeries show that cornual oxygenation changes are consistent with those observed in point measurements taken using a pulse oximeter, showing reduced SaO following reanastomosis. Values obtained using the MSI laparoscope were lower than those taken with the pulse oximeter, which may be due to the latter’s use of the pulsatile arterial blood signal. Future work incorporating immunological test results will help to correlate SaO levels with surgical outcomes

    Performance measurement for co-occurring mental health and substance use disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Co-occurring mental health and substance use disorders (COD) are the norm rather than the exception. It is therefore critical that performance measures are developed to assess the quality of care for individuals with COD irrespective of whether they seek care in mental health systems or substance abuse systems or both.</p> <p>Methods</p> <p>We convened an expert panel and asked them to rate a series of structure, process, and outcomes measures for COD using a structured evaluation tool with domains for importance, usefulness, validity, and practicality.</p> <p>Results</p> <p>We chose twelve measures that demonstrated promise for future pilot testing and refinement. The criteria that we applied to select these measures included: balance across structure, process, and outcome measures, quantitative ratings from the panelists, narrative comments from the panelists, and evidence the measure had been tested in a similar form elsewhere.</p> <p>Conclusion</p> <p>To be successful performance measures need to be developed in such a way that they align with needs of administrators and providers. Policymakers need to work with all stakeholders to establish a concrete agenda for developing, piloting and implementing performance measures that include COD. Future research could begin to consider strategies that increase our ability to use administrative coding in mental health and substance use disorder systems to efficiently capture quality relevant clinical data.</p

    The air quality impacts of road closures associated with the 2004 Democratic National Convention in Boston

    Get PDF
    BACKGROUND: The Democratic National Convention (DNC) in Boston, Massachusetts in 2004 provided an opportunity to evaluate the impacts of a localized and short-term but potentially significant change in traffic patterns on air quality, and to determine the optimal monitoring approach to address events of this nature. It was anticipated that the road closures associated with the DNC would both influence the overall air pollution level and the distribution of concentrations across the city, through shifts in traffic patterns. METHODS: To capture these effects, we placed passive nitrogen dioxide badges at 40 sites around metropolitan Boston before, during, and after the DNC, with the goal of capturing the array of hypothesized impacts. In addition, we continuously measured elemental carbon at three sites, and gathered continuous air pollution data from US EPA fixed-site monitors and traffic count data from the Massachusetts Highway Department. RESULTS: There were significant reductions in traffic volume on the highway with closures north of Boston, with relatively little change along other highways, indicating a more isolated traffic reduction rather than an across-the-board decrease. For our nitrogen dioxide samples, while there was a relatively small change in mean concentrations, there was significant heterogeneity across sites, which corresponded with our a priori classifications of road segments. The median ratio of nitrogen dioxide concentrations during the DNC relative to non-DNC sampling periods was 0.58 at sites with hypothesized traffic reductions, versus 0.88 for sites with no changes hypothesized and 1.15 for sites with hypothesized traffic increases. Continuous monitors measured slightly lower concentrations of elemental carbon and nitrogen dioxide during road closure periods at monitors proximate to closed highway segments, but not for PM(2.5 )or further from major highways. CONCLUSION: We conclude that there was a small but measurable influence of DNC-related road closures on air quality patterns in the Boston area, and that a low-cost monitoring study combining passive badges for spatial heterogeneity and continuous monitors for temporal heterogeneity can provide useful insight for community air quality assessments

    Brane-world black holes and the scale of gravity

    Full text link
    A particle in four dimensions should behave like a classical black hole if the horizon radius is larger than the Compton wavelength or, equivalently, if its degeneracy (measured by entropy in units of the Planck scale) is large. For spherically symmetric black holes in 4 + d dimensions, both arguments again lead to a mass threshold MC and degeneracy scale Mdeg of the order of the fundamental scale of gravity MG. In the brane-world, deviations from the Schwarzschild metric induced by bulk effects alter the horizon radius and effective four-dimensional Euclidean action in such a way that MC \simeq Mdeg might be either larger or smaller than MG. This opens up the possibility that black holes exist with a mass smaller than MG and might be produced at the LHC even if M>10 TeV, whereas effects due to bulk graviton exchanges remain undetectable because suppressed by inverse powers of MG. Conversely, even if black holes are not found at the LHC, it is still possible that MC>MG and MG \simeq 1TeV.Comment: 4 pages, no figur

    Phenotypic covariance of longevity, immunity and stress resistance in the Caenorhabditis nematodes

    Get PDF
    Background \ud Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin– like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four \ud Caenorhabditis species. \ud \ud Methodology/Principal Findings \ud We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged \ud significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud \ud Conclusions \ud The gonochoristic species display a significantly longer lifespan (p < 0.0001)and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants

    Phenotypic covariance of Longevity, Immunity and Stress Resistance in the Caenorhabditis Nematodes

    Get PDF
    Background: Ageing, immunity and stresstolerance are inherent characteristics of all organisms. In animals, these traits are regulated, at least in part, by forkhead transcription factors in response to upstream signals from the Insulin/Insulin–like growth factor signalling (IIS) pathway. In the nematode Caenorhabditis elegans, these phenotypes are molecularly linked such that activation of the forkhead transcription factor DAF-16 both extends lifespan and simultaneously increases immunity and stress resistance. It is known that lifespan varies significantly among the Caenorhabditis species but, although DAF-16 signalling is highly conserved, it is unclear whether this phenotypic linkage occurs in other species. Here we investigate this phenotypic covariance by comparing longevity, stress resistance and immunity in four Caenorhabditis species. \ud \ud Methodology/Principal Findings: We show using phenotypic analysis of DAF-16 influenced phenotypes that among four closely related Caenorhabditis nematodes, the gonochoristic species (Caenorhabditis remanei and Caenorhabditis brenneri) have diverged significantly with a longer lifespan, improved stress resistance and higher immunity than the hermaphroditic species (C. elegans and Caenorhabditis briggsae). Interestingly, we also observe significant differences in expression levels between the daf-16 homologues in these species using Real-Time PCR, which positively correlate with the observed phenotypes. Finally, we provide additional evidence in support of a role for DAF-16 in regulating phenotypic coupling by using a combination of wildtype isolates, constitutively active daf-16 mutants and bioinformatic analysis. \ud \ud Conclusions: The gonochoristic species display a significantly longer lifespan (p<0.0001) and more robust immune and stress response (p<0.0001, thermal stress; p<0.01, heavy metal stress; p<0.0001, pathogenic stress) than the hermaphroditic species. Our data suggests that divergence in DAF-16 mediated phenotypes may underlie many of the differences observed between these four species of Caenorhabditis nematodes. These findings are further supported by the correlative higher daf-16 expression levels among the gonochoristic species and significantly higher lifespan, immunity and stress tolerance in the constitutively active daf-16 hermaphroditic mutants

    Epidemiology and predictors of spinal injury in adult major trauma patients: European cohort study

    Get PDF
    This is a European cohort study on predictors of spinal injury in adult (≥16 years) major trauma patients, using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Predictors for spinal fractures/dislocations or spinal cord injury were determined using univariate and multivariate logistic regression analysis. 250,584 patients were analysed. 24,000 patients (9.6%) sustained spinal fractures/dislocations alone and 4,489 (1.8%) sustained spinal cord injury with or without fractures/dislocations. Spinal injury patients had a median age of 44.5 years (IQR = 28.8–64.0) and Injury Severity Score of 9 (IQR = 4–17). 64.9% were male. 45% of patients suffered associated injuries to other body regions. Age <45 years (≥45 years OR 0.83–0.94), Glasgow Coma Score (GCS) 3–8 (OR 1.10, 95% CI 1.02–1.19), falls >2 m (OR 4.17, 95% CI 3.98–4.37), sports injuries (OR 2.79, 95% CI 2.41–3.23) and road traffic collisions (RTCs) (OR 1.91, 95% CI 1.83–2.00) were predictors for spinal fractures/dislocations. Age <45 years (≥45 years OR 0.78–0.90), male gender (female OR 0.78, 95% CI 0.72–0.85), GCS <15 (OR 1.36–1.93), associated chest injury (OR 1.10, 95% CI 1.01–1.20), sports injuries (OR 3.98, 95% CI 3.04–5.21), falls >2 m (OR 3.60, 95% CI 3.21–4.04), RTCs (OR 2.20, 95% CI 1.96–2.46) and shooting (OR 1.91, 95% CI 1.21–3.00) were predictors for spinal cord injury. Multilevel injury was found in 10.4% of fractures/dislocations and in 1.3% of cord injury patients. As spinal trauma occurred in >10% of major trauma patients, aggressive evaluation of the spine is warranted, especially, in males, patients <45 years, with a GCS <15, concomitant chest injury and/or dangerous injury mechanisms (falls >2 m, sports injuries, RTCs and shooting). Diagnostic imaging of the whole spine and a diligent search for associated injuries are substantial

    Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila

    Get PDF
    Regenerative processes are critical to maintain tissue homeostasis in high-turnover tissues. At the same time, proliferation of stem and progenitor cells has to be carefully controlled to prevent hyper-proliferative diseases. Mechanisms that ensure this balance, thus promoting proliferative homeostasis, are expected to be critical for longevity in metazoans. The intestinal epithelium of Drosophila provides an accessible model in which to test this prediction. In aging flies, the intestinal epithelium degenerates due to over-proliferation of intestinal stem cells (ISCs) and mis-differentiation of ISC daughter cells, resulting in intestinal dysplasia. Here we show that conditions that impair tissue renewal lead to lifespan shortening, whereas genetic manipulations that improve proliferative homeostasis extend lifespan. These include reduced Insulin/IGF or Jun-N-terminal Kinase (JNK) signaling activities, as well as over-expression of stress-protective genes in somatic stem cell lineages. Interestingly, proliferative activity in aging intestinal epithelia correlates with longevity over a range of genotypes, with maximal lifespan when intestinal proliferation is reduced but not completely inhibited. Our results highlight the importance of the balance between regenerative processes and strategies to prevent hyperproliferative disorders and demonstrate that promoting proliferative homeostasis in aging metazoans is a viable strategy to extend lifespan
    corecore