881 research outputs found

    Interdental and subgingival microbiota may affect the tongue microbial ecology and oral malodour in health, gingivitis and periodontitis.

    Get PDF
    BACKGROUND AND OBJECTIVE: Oral malodour is often observed in gingivitis and chronic periodontitis patients, and the tongue microbiota is thought to play a major role in malodorous gas production, including volatile sulphur compounds (VSCs) such as hydrogen sulphide (H2 S) and methanethiol (CH3 SH). This study aimed to examine the link between the presence of VSCs in mouth air (as a marker of oral malodour) and the oral bacterial ecology in the tongue and periodontal niches of healthy, gingivitis and periodontitis patients. METHODS: Participants were clinically assessed using plaque index, bleeding on probing (BOP) and periodontal probing depths, and VSC concentrations in their oral cavity measured using a portable gas chromatograph. Tongue scrapings, subgingival and interdental plaque were collected from healthy individuals (n = 22), and those with gingivitis (n = 14) or chronic periodontitis (n = 15). The bacterial 16S rRNA gene region V3-V4 in these samples was sequenced, and the sequences were analysed using the minimum entropy decomposition pipeline. RESULTS: Elevated VSC concentrations and CH3 SH:H2 S were observed in periodontitis compared with health. Significant ecological differences were observed in the tongue microbiota of healthy subjects with high plaque scores compared to low plaque scores, suggesting a possible connection between the microbiota of the tongue and the periodontium and that key dysbiotic changes may be initiated in the clinically healthy individuals who have higher dental plaque accumulation. Greater subgingival bacterial diversity was positively associated with H2 S in mouth air. Periodontopathic bacteria known to be prolific VSC producers increased in abundance on the tongue associated with increased bleeding on probing (BOP) and total percentage of periodontal pockets >6 mm, supporting the suggestion that the tongue may become a reservoir for periodontopathogens. CONCLUSION: This study highlights the importance of the periodontal microbiota in malodour and has detected dysbiotic changes in the tongue microbiota in periodontitis

    Quantitative trait loci for bone traits segregating independently of those for growth in an F-2 broiler X layer cross

    Get PDF
    An F broiler-layer cross was phenotyped for 18 skeletal traits at 6, 7 and 9 weeks of age and genotyped with 120 microsatellite markers. Interval mapping identified 61 suggestive and significant QTL on 16 of the 25 linkage groups for 16 traits. Thirty-six additional QTL were identified when the assumption that QTL were fixed in the grandparent lines was relaxed. QTL with large effects on the lengths of the tarsometatarsus, tibia and femur, and the weights of the tibia and femur were identified on GGA4 between 217 and 249 cM. Six QTL for skeletal traits were identified that did not co-locate with genome wide significant QTL for body weight and two body weight QTL did not coincide with skeletal trait QTL. Significant evidence of imprinting was found in ten of the QTL and QTL x sex interactions were identified for 22 traits. Six alleles from the broiler line for weight- and size-related skeletal QTL were positive. Negative alleles for bone quality traits such as tibial dyschondroplasia, leg bowing and tibia twisting generally originated from the layer line suggesting that the allele inherited from the broiler is more protective than the allele originating from the layer
    • …
    corecore