58 research outputs found

    From Architectured Materials to the Development of Large-scale Additive Manufacturing

    Get PDF
    Architectured materials are a rising class of materials that bring new possibilities in terms of functional properties, filling the gaps and pushing the limits of Ashby’s materials performance maps [1]. Capitalizing on the concepts of architectured materials, explorations of the potential applications of large-scale 3D printing techniques to civil engineering structures were recently implemented in the DEMOCRITE project

    Towards gigantic RVE sizes for 3D stochastic fibrous networks

    Get PDF
    The size of representative volume element (RVE) for 3D stochastic fibrous media is investigated. A statistical RVE size determination method is applied to a specific model of random microstructure: Poisson fibers. The definition of RVE size is related to the concept of integral range. What happens in microstructures exhibiting an infinite integral range? Computational homogenization for thermal and elastic properties is performed through finite elements, over hundreds of realizations of the stochastic microstructural model, using uniform and mixed boundary conditions. The generated data undergoes statistical treatment, from which gigantic RVE sizes emerge. The method used for determining RVE sizes was found to be operational, even for pathological media, i.e., with infinite integral range, interconnected percolating porous phase and infinite contrast of propertie

    Elastoplasticity of auxetic materials

    Get PDF
    International audienceMaterials exhibiting a negative Poisson's ratio (auxetics) have drawn attention for the past two decades, especially in the field of lightweight composite structures and cellular media. Studies have shown that auxeticity may result in higher shear modulus, indentation toughness and acoustic damping. Although elastic properties of such materials have been extensively investigated, the effect of plasticity on auxetic behavior has not been discussed. In particular, does the auxetic character of the material remain while entering the plastic domain? The present work aims at modeling the nonlinear mechanical response of auxetics. Full-field simulations are performed using the finite element method with periodic boundary conditions. Macroscopic modeling of auxetics is attempted using an anisotropic compressible plasticity framework

    Effective elastic properties of auxetic microstructures : anisotropy and structural applications

    Get PDF
    International audienceMaterials presenting a negative Poisson's ratio (auxetics) have drawn attention for the past two decades, especially in the field of lightweight composite structures and cellular media. Studies have shown that auxeticity may result in higher shear modulus, indentation toughness and acoustic damping. In this work, three auxetic periodic microstructures based on 2D geometries are considered for being used as sandwich-core materials. Elastic moduli are computed for each microstructure by using finite elements combined with periodic homogenization technique. Anisotropy of elastic properties is investigated in and out-of-plane. Comparison is made between auxetics and the classical honeycomb cell. A new 3D auxetic lattice is proposed for volumic applications. Cylindrical and spherical elastic indentation tests are simulated in order to conclude on the applicability of such materials to structures. Proof is made that under certain conditions, auxetics can be competitive with honeycomb cells in terms of indentation strength. Their relatively soft response in tension can be compensated, in some situations, by high shear moduli

    Homogenization of periodic auxetic materials

    Get PDF
    International audienceMaterials presenting a negative Poisson's ratio (auxetics) have drawn attention for the past two decades, especially in the field of lightweight composite structures and cellular materials. Studies have shown that auxeticity may result in higher shear modulus, fracture toughness and acoustic damping. In this work, three auxetic periodic lattices are considered. Elastic moduli are computed and anisotropy is investigated by the use of finite element method combined with numerical homogenization technique

    Effective elastic properties of auxetic microstructures: anisotropy and structural applications

    Get PDF
    Abstract Materials presenting a negative Poisson's ratio (auxetics) have drawn attention for the past two decades, especially in the field of lightweight composite structures and cellular media. Studies have shown that auxeticity may result in higher shear modulus, indentation toughness and acoustic damping. In this work, three auxetic periodic microstructures based on 2D geometries are considered for being used as sandwich-core materials. Elastic moduli are computed for each microstructure by using finite elements combined with periodic homogenization technique. Anisotropy of elastic properties is investigated in and out-of-plane. Comparison is made between auxetics and the classical honeycomb cell. A new 3D auxetic lattice is proposed for volumic applications. Cylindrical and spherical elastic indentation tests are simulated in order to conclude on the applicability of such materials to structures. Proof is made that under certain conditions, auxetics can be competitive with honeycomb cells in terms of indentation strength. Their relatively soft response in tension can be compensated, in some situations, by high shear moduli

    Classification of building systems for concrete 3D printing

    Get PDF
    In the present paper, a study is conducted on building systems associated with concrete extrusion-based additive manufacturing techniques. Specific parameters are highlighted - concerning scale, environment, support, and assembly strategies - and a classification method is introduced. The objective is to explicitly characterise construction systems based on such printing processes. A cartography of the different approaches and subsequent robotic complexity is proposed. The state of the art gathered from the literature is mapped thanks to this classification. It appears that the disruption potential brought by concrete 3D printing has not been fully embraced yet.LafargeHolci

    Representative volume element size determination for viscoplastic properties in polycrystalline materials

    Get PDF
    The size of representative volume element (RVE) for 3D polycrystalline material is investigated. A statistical RVE size determination method is applied to a Voronoi tessellation-based pure copper microstructure. The definition of RVE has remained problematic in the literature for properties related to nonlinear viscoplastic behavior, e.g. apparent viscoplastic parameter, intrinsic plastic dissipation. Computational homogenization for elastic and plastic properties is performed within a crystal plasticity finite element framework, over many realizations of the stochastic microstructural model, using periodic boundary conditions. The generated data undergoes statistical treatment, from which RVE sizes are obtained. The method used for determining RVE sizes was found to be operational, even for viscoplasticity. The microscale analysis of the full-field simulation results reveals microstructure-relate heterogeneities which shed new light on the problem of RVE size determination for nonlinear properties

    Design of Space Truss Based Insulating Walls for Robotic Fabrication in Concrete

    Get PDF
    This work focuses on the design of ultra-light concrete walls for individual or collective housing, the normative context being constrained masonry. It is stated that current block work building is very inefficient in terms of quantity of concrete used for cinderblocks and mortar joints, and with regards to thermal insulation. Here is proposed a robotic manufacturing technique based on mortar extrusion that allows producing more efficient walls. First we present the fabrication concept, then design criteria for such objects. In the last section we show a comparative study on different geometries. We conclude with a discussion on the performances of this proposed building system
    corecore