46 research outputs found

    New targets for therapy in breast cancer: Mammalian target of rapamycin (mTOR) antagonists

    Get PDF
    Mammalian target of rapamycin (mTOR) is a serine-threonine kinase member of the cellular phosphatidylinositol 3-kinase (PI3K) pathway, which is involved in multiple biologic functions such as transcriptional and translational control. mTOR is a downstream mediator in the PI3K/Akt signaling pathway and plays a critical role in cell survival. In breast cancer this pathway can be activated by membrane receptors, including the HER (or ErbB) family of growth factor receptors, the insulin-like growth factor receptor, and the estrogen receptor. There is evidence suggesting that Akt promotes breast cancer cell survival and resistance to chemotherapy, trastuzumab, and tamoxifen. Rapamycin is a specific mTOR antagonist that targets this pathway and blocks the downstream signaling elements, resulting in cell cycle arrest in the G(1 )phase. Targeting the Akt/PI3K pathway with mTOR antagonists may increase the therapeutic efficacy of breast cancer therapy

    Predicted mechanisms of resistance to mTOR inhibitors

    Get PDF
    The serine/threonine kinase, mTOR (mammalian Target of Rapamycin) has become a focus for cancer drug development. Rapamycins are highly specific inhibitors of mTOR and potently suppress tumour cell growth by retarding cells in G1 phase or potentially inducing apoptosis. Currently, both rapamycin and several analogues are being evaluated as anticancer agents in clinical trials. Results indicate that many human cancers have intrinsic resistance and tumours initially sensitive to rapamycins become refractory, demonstrating acquired resistance. Here, we consider mechanisms of resistance to inhibitors of mTOR

    mTOR signaling: implications for cancer and anticancer therapy

    Get PDF
    Mounting evidence links deregulated protein synthesis to tumorigenesis via the translation initiation factor complex eIF4F. Components of this complex are often overexpressed in a large number of cancers and promote malignant transformation in experimental systems. mTOR affects the activity of the eIF4F complex by phosphorylating repressors of the eIF4F complex, the eIF4E binding proteins. The immunosuppressant rapamycin specifically inhibits mTOR activity and retards cancer growth. Importantly, mutations in upstream negative regulators of mTOR cause hamartomas, haemangiomas, and cancers that are sensitive to rapamycin treatment. Such mutations lead to increased eIF4F formation and consequently to enhanced translation initiation and cell growth. Thus, inhibition of translation initiation through targeting the mTOR-signalling pathway is emerging as a promising therapeutic option

    Synergistic growth inhibition by Iressa and Rapamycin is modulated by VHL mutations in renal cell carcinoma

    Get PDF
    Epidermal growth factor receptor (EGFR) and tumour growth factor alpha (TGFα) are frequently overexpressed in renal cell carcinoma (RCC) yet responses to single-agent EGFR inhibitors are uncommon. Although von Hippel–Lindau (VHL) mutations are predominant, RCC also develops in individuals with tuberous sclerosis (TSC). Tuberous sclerosis mutations activate mammalian target of rapamycin (mTOR) and biochemically resemble VHL alterations. We found that RCC cell lines expressed EGFR mRNA in the near-absence of other ErbB family members. Combined EGFR and mTOR inhibition synergistically impaired growth in a VHL-dependent manner. Iressa blocked ERK1/2 phosphorylation specifically in wt-VHL cells, whereas rapamycin inhibited phospho-RPS6 and 4E-BP1 irrespective of VHL. In contrast, phospho-AKT was resistant to these agents and MYC translation initiation (polysome binding) was similarly unaffected unless AKT was inhibited. Primary RCCs vs cell lines contained similar amounts of phospho-ERK1/2, much higher levels of ErbB-3, less phospho-AKT, and no evidence of phospho-RPS6, suggesting that mTOR activity was reduced. A subset of tumours and cell lines expressed elevated eIF4E in the absence of upstream activation. Despite similar amounts of EGFR mRNA, cell lines (vs tumours) overexpressed EGFR protein. In the paired cell lines, PRC3 and WT8, EGFR protein was elevated post-transcriptionally in the VHL mutant and EGF-stimulated phosphorylation was prolonged. We propose that combined EGFR and mTOR inhibitors may be useful in the subset of RCCs with wt-VHL. However, apparent differences between primary tumours and cell lines require further investigation

    A license to cure?

    No full text
    Lab Anim (NY) 2017 Mar 22; 46(4):162-163

    A license to cure?

    No full text
    corecore