245 research outputs found

    Active Stat3 is required for survival of human squamous cell carcinoma cells in serum-free conditions

    Get PDF
    BACKGROUND: Squamous cell carcinoma (SCC) of the skin is the most aggressive form of non-melanoma skin cancer (NMSC), and is the single most commonly diagnosed cancer in the U.S., with over one million new cases reported each year. Recent studies have revealed an oncogenic role of activated signal transducer and activator of transcription 3 (Stat3) in many human tumors, especially in those of epithelial origin, including skin SCC. Stat3 is a mediator of numerous growth factor and cytokine signaling pathways, all of which activate it through phosphorylation of tyrosine 705. RESULTS: To further address the role of Stat3 in skin SCC tumorigenesis, we have analyzed a panel of human skin-derived cell lines ranging from normal human epidermal keratinocytes (NHEK), to non-tumorigenic transformed skin cells (HaCaT), to highly tumorigenic cells (SRB1-m7 and SRB12-p9) and observed a positive correlation between Stat3 phosphorylation and SCC malignancy. We next determined the role of Stat3 activity in cell proliferation and viability under serum-free culture conditions. This was accomplished by suppressing Stat3 activity in the SRB12-p9 cells through stable expression of a dominant negative acting form of Stat3β, which contains a tyrosine 705 to phenylalanine mutation (S3DN). The S3DN cells behaved similar to parental SRB12-p9 cells when cultured in optimal growth conditions, in the presence of 10% fetal calf serum. However, unlike the SRB12-p9 cells, S3DN cells underwent apoptotic cell death when cultured in serum-free medium (SFM). This was evidenced by multiple criteria, including accumulation of sub-G1 particles, induced PARP cleavage, and acquisition of the characteristic morphological changes associated with apoptosis. CONCLUSION: This study provides direct evidence for a role for Stat3 in maintaining cell survival in the conditions of exogenous growth factor deprivation produced by culture in SFM. We also propose that delivery of the S3DN gene or protein to tumor cells could induce apoptosis and/or sensitize those cells to the apoptotic effects of cancer therapeutic agents, raising the possibility of using S3DN as an adjunct for treatment of skin SCC

    The effectiveness of manual stretching in the treatment of plantar heel pain: a systematic review

    Get PDF
    Background: Plantar heel pain is a commonly occurring foot complaint. Stretching is frequently utilised as a treatment, yet a systematic review focusing only on its effectiveness has not been published. This review aimed to assess the effectiveness of stretching on pain and function in people with plantar heel pain. Methods: Medline, EMBASE, CINAHL, AMED, and The Cochrane Library were searched from inception to July 2010. Studies fulfilling the inclusion criteria were independently assessed, and their quality evaluated using the modified PEDro scale. Results: Six studies including 365 symptomatic participants were included. Two compared stretching with a control, one study compared stretching to an alternative intervention, one study compared stretching to both alternative and control interventions, and two compared different stretching techniques and durations. Quality rating on the modified Pedro scale varied from two to eight out of a maximum of ten points. The methodologies and interventions varied significantly between studies, making meta-analysis inappropriate. Most participants improved over the course of the studies, but when stretching was compared to alternative or control interventions, the changes only reached statistical significance in one study that used a combination of calf muscle stretches and plantar fascia stretches in their stretching programme. Another study comparing different stretching techniques, showed a statistically significant reduction in some aspects of pain in favour of plantar fascia stretching over calf stretches in the short term. Conclusions: There were too few studies to assess whether stretching is effective compared to control or other interventions, for either pain or function. However, there is some evidence that plantar fascia stretching may be more effective than Achilles tendon stretching alone in the short-term. Appropriately powered randomised controlled trials, utilizing validated outcome measures, blinded assessors and long-term follow up are needed to assess the efficacy of stretching

    PROMIS Pain Interference Is Superior vs Numeric Pain Rating Scale for Pain Assessment in Foot and Ankle Patients

    Full text link
    Background: The Numeric Pain Rating Scale (NPRS) is a popular method to assess pain. Recently, the Patient-Reported Outcomes Measurement Information System (PROMIS) has been suggested to be more accurate in measuring pain. This study aimed to compare NPRS and PROMIS Pain Interference (PI) scores in a population of foot and ankle patients to determine which method demonstrated a stronger correlation with preoperative and postoperative function, as measured by PROMIS Physical Function (PF). Methods: Prospective PROMIS PF and PI and NPRS data were obtained for 8 common elective foot and ankle surgical procedures. Data were collected preoperatively and postoperatively at a follow-up visit at least 6 months after surgery. Spearman correlation coefficients were calculated to determine the relationship among NPRS (0-10) and PROMIS domains (PI, PF) pre- and postoperatively. A total of 500 patients fit our inclusion criteria. Results: PROMIS PF demonstrated a stronger correlation to PROMIS PI in both the pre- and postoperative settings (preoperative: ρ = −0.66; postoperative: ρ = −0.69) compared with the NPRS (preoperative: ρ = −0.32; postoperative: ρ = −0.33). Similar results were found when data were grouped by Current Procedural Terminology (CPT) code. Conclusion: PROMIS PI was a superior tool to gauge a patient’s preoperative level of pain and functional ability. This information may assist surgeons and patients in setting postoperative functional expectations and pain management. Level of Evidence: Level II, prognosti

    Metric for Measuring the Effectiveness of Clustering of DNA Microarray Expression

    Get PDF
    BACKGROUND: The recent advancement of microarray technology with lower noise and better affordability makes it possible to determine expression of several thousand genes simultaneously. The differentially expressed genes are filtered first and then clustered based on the expression profiles of the genes. A large number of clustering algorithms and distance measuring matrices are proposed in the literature. The popular ones among them include hierarchal clustering and k-means clustering. These algorithms have often used the Euclidian distance or Pearson correlation distance. The biologists or the practitioners are often confused as to which algorithm to use since there is no clear winner among algorithms or among distance measuring metrics. Several validation indices have been proposed in the literature and these are based directly or indirectly on distances; hence a method that uses any of these indices does not relate to any biological features such as biological processes or molecular functions. RESULTS: In this paper we have proposed a metric to measure the effectiveness of clustering algorithms of genes by computing inter-cluster cohesiveness and as well as the intra-cluster separation with respect to biological features such as biological processes or molecular functions. We have applied this metric to the clusters on the data set that we have created as part of a larger study to determine the cancer suppressive mechanism of a class of chemicals called retinoids. We have considered hierarchal and k-means clustering with Euclidian and Pearson correlation distances. Our results show that genes of similar expression profiles are more likely to be closely related to biological processes than they are to molecular functions. The findings have been supported by many works in the area of gene clustering. CONCLUSION: The best clustering algorithm of genes must achieve cohesiveness within a cluster with respect to some biological features, and as well as maximum separation between clusters in terms of the distribution of genes of a behavioral group across clusters. We claim that our proposed metric is novel in this respect and that it provides a measure of both inter and intra cluster cohesiveness. Best of all, computation of the proposed metric is easy and it provides a single quantitative value, which makes comparison of different algorithms easier. The maximum cluster cohesiveness and the maximum intra-cluster separation are indicated by the metric when its value is 0. We have demonstrated the metric by applying it to a data set with gene behavioral groupings such as biological process and molecular functions. The metric can be easily extended to other features of a gene such as DNA binding sites and protein-protein interactions of the gene product, special features of the intron-exon structure, promoter characteristics, etc. The metric can also be used in other domains that use two different parametric spaces; one for clustering and the other one for measuring the effectiveness

    Soliton dragging in discrete and distributed amplifiers

    Full text link
    The authors introduce erbium-doped fibre amplifiers (EDFA) into soliton-dragging logic gates (SDLG) to improve their performance in terms of switching energy, fan-out and tolerance to timing jitter. In particular, they experimentally and numerically examine the frequency shifts associated with soliton dragging for orthogonally polarized pulses interacting in discrete and distributed amplifiers. The authors show that EDFA asymmetrize the interaction between pulses, leading to a frequency shift even when pulses completely walk through each other. The gain can increase the fan-out and/or reduce the switching energy, while proper positioning of the amplifier can loosen the timing restrictions for SDLG. We find reasonable agreement between calculations and measurements in the discrete amplifier case. However, discrepancies for the distributed amplifier case may result from non-uniform gain profiles along the length of the amplifier.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/48863/2/qs930501.pd

    The C1q and gC1qR axis as a novel checkpoint inhibitor in cancer

    Get PDF
    Understanding at the molecular level of the cell biology of tumors has led to significant treatment advances in the past. Despite such advances however, development of therapy resistance and tumor recurrence are still unresolved major challenges. This therefore underscores the need to identify novel tumor targets and develop corresponding therapies to supplement existing biologic and cytotoxic approaches so that a deeper and more sustained treatment responses could be achieved. The complement system is emerging as a potential novel target for cancer therapy. Data accumulated to date show that complement proteins, and in particular C1q and its receptors cC1qR/CR and gC1qR/p33/HABP1, are overexpressed in most cancer cells and together are involved not only in shaping the inflammatory tumor microenvironment, but also in the regulation of angiogenesis, metastasis, and cell proliferation. In addition to the soluble form of C1q that is found in plasma, the C1q molecule is also found anchored on the cell membrane of monocytes, macrophages, dendritic cells, and cancer cells, via a 22aa long leader peptide found only in the A-chain. This orientation leaves its 6 globular heads exposed outwardly and thus available for high affinity binding to a wide range of molecular ligands that enhance tumor cell survival, migration, and proliferation. Similarly, the gC1qR molecule is not only overexpressed in most cancer types but is also released into the microenvironment where it has been shown to be associated with cancer cell proliferation and metastasis by activation of the complement and kinin systems. Co-culture of either T cells or cancer cells with purified C1q or anti-gC1qR has been shown to induce an anti-proliferative response. It is therefore postulated that in the tumor microenvironment, the interaction between C1q expressing cancer cells and gC1qR bearing cytotoxic T cells results in T cell suppression in a manner akin to the PD-L1 and PD-1 interaction

    Activin enhances skin tumourigenesis and malignant progression by inducing a pro-tumourigenic immune cell response

    Get PDF
    Activin is an important orchestrator of wound repair, but its potential role in skin carcinogenesis has not been addressed. Here we show using different types of genetically modified mice that enhanced levels of activin in the skin promote skin tumour formation and their malignant progression through induction of a pro-tumourigenic microenvironment. This includes accumulation of tumour-promoting Langerhans cells and regulatory T cells in the epidermis. Furthermore, activin inhibits proliferation of tumour-suppressive epidermal γδ T cells, resulting in their progressive loss during tumour promotion. An increase in activin expression was also found in human cutaneous basal and squamous cell carcinomas when compared with control tissue. These findings highlight the parallels between wound healing and cancer, and suggest inhibition of activin action as a promising strategy for the treatment of cancers overexpressing this factor
    corecore