1,360 research outputs found

    Rate- and State-Dependent Friction Law and Statistical Properties of Earthquakes

    Full text link
    In order to clarify how the statistical properties of earthquakes depend on the constitutive law characterizing the stick-slip dynamics, we make an extensive numerical simulation of the one-dimensional spring-block model with the rate- and state-dependent friction law. Both the magnitude distribution and the recurrence-time distribution are studied with varying the constitutive parameters characterizing the model. While a continuous spectrum of seismic events from smaller to larger magnitudes is obtained, earthquakes described by this model turn out to possess pronounced ``characteristic'' features.Comment: Minor revisions are made in the text and in the figures. Accepted for publication in Europhys. Letter

    Acoustic radiation controls friction: Evidence from a spring-block experiment

    Full text link
    Brittle failures of materials and earthquakes generate acoustic/seismic waves which lead to radiation damping feedbacks that should be introduced in the dynamical equations of crack motion. We present direct experimental evidence of the importance of this feedback on the acoustic noise spectrum of well-controlled spring-block sliding experiments performed on a variety of smooth surfaces. The full noise spectrum is quantitatively explained by a simple noisy harmonic oscillator equation with a radiation damping force proportional to the derivative of the acceleration, added to a standard viscous term.Comment: 4 pages including 3 figures. Replaced with version accepted in PR

    Teaching old NCATs new tricks: using non-canonical amino acid tagging to study neuronal plasticity

    Get PDF
    The non-canonical amino acid labeling techniques BONCAT (bioorthogonal non-canonical amino acid tagging) and FUNCAT (fluorescent non-canonical amino acid tagging) enable the specific identification and visualization of newly synthesized proteins. Recently, these techniques have been applied to neuronal systems to elucidate protein synthesis dynamics during plasticity, identify stimulation-induced proteomes and subproteomes and to investigate local protein synthesis in specific subcellular compartments. The next generation of tools and applications, reviewed here, includes the development of new tags, the quantitative identification of newly synthesized proteins, the application of NCAT to whole animals, and the ability to genetically restrict NCAT labeling. These techniques will enable not only improved detection but also allow new scientific questions to be tackled

    Boundary lubrication with a glassy interface

    Full text link
    Recently introduced constitutive equations for the rheology of dense, disordered materials are investigated in the context of stick-slip experiments in boundary lubrication. The model is based on a generalization of the shear transformation zone (STZ) theory, in which plastic deformation is represented by a population of mesoscopic regions which may undergo non affine deformations in response to stress. The generalization we study phenomenologically incorporates the effects of aging and glassy relaxation. Under experimental conditions associated with typical transitions from stick-slip to steady sliding and stop start tests, these effects can be dominant, although the full STZ description is necessary to account for more complex, chaotic transitions

    PHYSICOCHEMICAL EFFECTS OF SYNTHETIC HYDRAULIC FRACTURING FLUID ON CORE SAMPLES OF THE MIDDLE DEVONIAN MARCELLUS SHALE AND UNDERLYING HUNTERSVILLE CHERT, GREENE COUNTY, PENNSYLVANIA, USA

    Get PDF
    Hydraulic fracturing from directional drilling involves the injection of large quantities of fluid into the target formation, and creates a significant volume of rock with a high surface area in contact with injection fluid and associated brines. Over time, fluid-rock interactions between the saline injection fluids, formation waters released by fracturing, and the fractured rock results in physical and chemical alteration that can lead to changes in rock strength and fracture connectivity. Factors affecting alteration processes include temperature, rock mineralogy, and the composition and ionic strength of the fluids. Experiments conducted at surface (23°C) and borehole temperatures (70°C) assessed the effect of high ionic strength fluids on the mineralogical, textural and chemical characteristics of high surface area core samples of organic rich Marcellus Shale and underlying Huntersville Chert. Comparison of pre- and post-experiment fluid composition and rock mineralogy, surface area, and textures indicate that some reactions were temperature- and/or lithology-dependent. The results also suggest that fluid-rock interaction, including cation exchange reactions, sorption, mineral alteration, and dissolution and mobilization of some trace metals (e.g., nickel, boron, manganese and lithium) can be observed over short (days) time scales

    Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy

    Get PDF
    Impaired diastolic filling is a main contributor to heart failure with preserved ejection fraction (HFpEF), a syndrome with increasing prevalence and no treatment. Both collagen and the giant sarcomeric protein titin determine diastolic function. Since titin's elastic properties can be adjusted physiologically, we evaluated titin-based stiffness as a therapeutic target. We adjusted RBM20-dependent cardiac isoform expression in the titin N2B knockout mouse with increased ventricular stiffness. A ~50 % reduction of RBM20 activity does not only maintain cardiac filling in diastole but also ameliorates cardiac atrophy and thus improves cardiac function in the N2B-deficient heart. Reduced RBM20 activity partially normalized gene expression related to muscle development and fatty acid metabolism. The adaptation of cardiac growth was related to hypertrophy signaling via four-and-a-half lim-domain proteins (FHLs) that translate mechanical input into hypertrophy signals. We provide a novel link between cardiac isoform expression and trophic signaling via FHLs and suggest cardiac splicing as a therapeutic target in diastolic dysfunction. KEY MESSAGE: Increasing the length of titin isoforms improves ventricular filling in heart disease. FHL proteins are regulated via RBM20 and adapt cardiac growth. RBM20 is a therapeutic target in diastolic dysfunction

    Distorted mental spatial representation of multi-level buildings - Humans are biased towards equilateral shapes of height and width

    Get PDF
    A distorted model of a familiar multi-level building with a systematic overestimation of the height was demonstrated earlier in psychophysical and real world navigational tasks. In the current study we further investigated this phenomenon with a tablet-based application. Participants were asked to adjust height and width of the presented buildings to best match their memory of the dimensional ratio. The estimation errors between adjusted and true height-width ratios were analyzed. Additionally, familiarity with respect to in- and outside of the building as well as demographic data were acquired. A total of 142 subjects aged 21 to 90 years from the cities of Bern and Munich were tested. Major results were: (1) a median overestimation of the height of the multi-level buildings of 11%;(2) estimation errors were significantly less if the particular building was unknown to participants;(3) in contrast, the height of tower-like buildings was underestimated;(4) the height of long, flat shaped buildings was overestimated. (5) Further features, such as the architectonical complexity were critical. Overall, our internal models of large multi-level buildings are distorted due to multiple factors including geometric features and memory effects demonstrating that such individual models are not rigid but plastic with consequences for spatial orientation and navigation

    On the Backbending Mechanism of 48^{48}Cr

    Full text link
    The mechanism of backbending in 48^{48}Cr is investigated in terms of the Projected Shell Model and the Generator Coordinate Method. It is shown that both methods are reasonable shell model truncation schemes. These two quite different quantum mechanical approaches lead to a similar conclusion that the backbending is due to a band crossing involving an excited band which is built on simultaneously broken neutron and proton pairs in the ``intruder'' subshell f7/2f_{7/2}. It is pointed out that this type of band crossing is usually known to cause the second backbending in rare-earth nuclei.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Let

    Dynamics of Viscoplastic Deformation in Amorphous Solids

    Full text link
    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these new state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition, and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations.Comment: 16 pages, 9 figure

    Kinetics in one-dimensional lattice gas and Ising models from time-dependent density functional theory

    Full text link
    Time-dependent density functional theory, proposed recently in the context of atomic diffusion and non-equilibrium processes in solids, is tested against Monte Carlo simulation. In order to assess the basic approximation of that theory, the representation of non-equilibrium states by a local equilibrium distribution function, we focus on one-dimensional lattice models, where all equilibrium properties can be worked exactly from the known free energy as a functional of the density. This functional determines the thermodynamic driving forces away from equilibrium. In our studies of the interfacial kinetics of atomic hopping and spin relaxation, we find excellent agreement with simulations, suggesting that the method is useful also for treating more complex problems.Comment: 8 pages, 5 figures, submitted to Phys. Rev.
    corecore