8,684 research outputs found

    Surface critical behavior of driven diffusive systems with open boundaries

    Full text link
    Using field theoretic renormalization group methods we study the critical behavior of a driven diffusive system near a boundary perpendicular to the driving force. The boundary acts as a particle reservoir which is necessary to maintain the critical particle density in the bulk. The scaling behavior of correlation and response functions is governed by a new exponent eta_1 which is related to the anomalous scaling dimension of the chemical potential of the boundary. The new exponent and a universal amplitude ratio for the density profile are calculated at first order in epsilon = 5-d. Some of our results are checked by computer simulations.Comment: 10 pages ReVTeX, 6 figures include

    On the surface critical behaviour in Ising strips: density-matrix renormalization-group study

    Full text link
    Using the density-matrix renormalization-group method we study the surface critical behaviour of the magnetization in Ising strips in the subcritical region. Our results support the prediction that the surface magnetization in the two phases along the pseudo-coexistence curve also behaves as for the ordinary transition below the wetting temperature for the finite value of the surface field.Comment: 15 pages, 9 figure

    Boundary critical behavior at m-axial Lifshitz points for a boundary plane parallel to the modulation axes

    Full text link
    The critical behavior of semi-infinite dd-dimensional systems with nn-component order parameter ϕ\bm{\phi} and short-range interactions is investigated at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. The associated mm modulation axes are presumed to be parallel to the surface, where 0md10\le m\le d-1. An appropriate semi-infinite ϕ4|\bm{\phi}|^4 model representing the corresponding universality classes of surface critical behavior is introduced. It is shown that the usual O(n) symmetric boundary term ϕ2\propto \bm{\phi}^2 of the Hamiltonian must be supplemented by one of the form λ˚α=1m(ϕ/xα)2\mathring{\lambda} \sum_{\alpha=1}^m(\partial\bm{\phi}/\partial x_\alpha)^2 involving a dimensionless (renormalized) coupling constant λ\lambda. The implied boundary conditions are given, and the general form of the field-theoretic renormalization of the model below the upper critical dimension d(m)=4+m/2d^*(m)=4+{m}/{2} is clarified. Fixed points describing the ordinary, special, and extraordinary transitions are identified and shown to be located at a nontrivial value λ\lambda^* if ϵd(m)d>0\epsilon\equiv d^*(m)-d>0. The surface critical exponents of the ordinary transition are determined to second order in ϵ\epsilon. Extrapolations of these ϵ\epsilon expansions yield values of these exponents for d=3d=3 in good agreement with recent Monte Carlo results for the case of a uniaxial (m=1m=1) Lifshitz point. The scaling dimension of the surface energy density is shown to be given exactly by d+m(θ1)d+m (\theta-1), where θ=νl4/νl2\theta=\nu_{l4}/\nu_{l2} is the anisotropy exponent.Comment: revtex4, 31 pages with eps-files for figures, uses texdraw to generate some graphs; to appear in PRB; v2: some references and additional remarks added, labeling in figure 1 and some typos correcte

    Boundary critical behaviour at mm-axial Lifshitz points: the special transition for the case of a surface plane parallel to the modulation axes

    Full text link
    The critical behaviour of dd-dimensional semi-infinite systems with nn-component order parameter ϕ\bm{\phi} is studied at an mm-axial bulk Lifshitz point whose wave-vector instability is isotropic in an mm-dimensional subspace of Rd\mathbb{R}^d. Field-theoretic renormalization group methods are utilised to examine the special surface transition in the case where the mm potential modulation axes, with 0md10\leq m\leq d-1, are parallel to the surface. The resulting scaling laws for the surface critical indices are given. The surface critical exponent ηsp\eta_\|^{\rm sp}, the surface crossover exponent Φ\Phi and related ones are determined to first order in \epsilon=4+\case{m}{2}-d. Unlike the bulk critical exponents and the surface critical exponents of the ordinary transition, Φ\Phi is mm-dependent already at first order in ϵ\epsilon. The \Or(\epsilon) term of ηsp\eta_\|^{\rm sp} is found to vanish, which implies that the difference of β1sp\beta_1^{\rm sp} and the bulk exponent β\beta is of order ϵ2\epsilon^2.Comment: 21 pages, one figure included as eps file, uses IOP style file

    Thermodynamic Casimir effects involving interacting field theories with zero modes

    Full text link
    Systems with an O(n) symmetrical Hamiltonian are considered in a dd-dimensional slab geometry of macroscopic lateral extension and finite thickness LL that undergo a continuous bulk phase transition in the limit LL\to\infty. The effective forces induced by thermal fluctuations at and above the bulk critical temperature Tc,T_{c,\infty} (thermodynamic Casimir effect) are investigated below the upper critical dimension d=4d^*=4 by means of field-theoretic renormalization group methods for the case of periodic and special-special boundary conditions, where the latter correspond to the critical enhancement of the surface interactions on both boundary planes. As shown previously [\textit{Europhys. Lett.} \textbf{75}, 241 (2006)], the zero modes that are present in Landau theory at Tc,T_{c,\infty} make conventional RG-improved perturbation theory in 4ϵ4-\epsilon dimensions ill-defined. The revised expansion introduced there is utilized to compute the scaling functions of the excess free energy and the Casimir force for temperatures T\geqT_{c,\infty} as functions of LL/ξ\mathsf{L}\equiv L/\xi_\infty, where ξ\xi_\infty is the bulk correlation length. Scaling functions of the LL-dependent residual free energy per area are obtained whose L0\mathsf{L}\to0 limits are in conformity with previous results for the Casimir amplitudes ΔC\Delta_C to O(ϵ3/2)O(\epsilon^{3/2}) and display a more reasonable small-L\mathsf{L} behavior inasmuch as they approach the critical value ΔC\Delta_C monotonically as L0\mathsf{L}\to 0.Comment: 23 pages, 10 figure

    Spin transport in magnetic multilayers

    Full text link
    We study by extensive Monte Carlo simulations the transport of itinerant spins travelling inside a multilayer composed of three ferromagnetic films antiferromagnetically coupled to each other in a sandwich structure. The two exterior films interact with the middle one through non magnetic spacers. The spin model is the Ising one and the in-plane transport is considered. Various interactions are taken into account. We show that the current of the itinerant spins going through this system depends strongly on the magnetic ordering of the multilayer: at temperatures TT below (above) the transition temperature TcT_c, a strong (weak) current is observed. This results in a strong jump of the resistance across TcT_c. Moreover, we observe an anomalous variation, namely a peak, of the spin current in the critical region just above TcT_c. We show that this peak is due to the formation of domains in the temperature region between the low-TT ordered phase and the true paramagnetic disordered phase. The existence of such domains is known in the theory of critical phenomena. The behavior of the resistance obtained here is compared to a recent experiment. An excellent agreement with our physical interpretation is observed. We also show and discuss effects of various physical parameters entering our model such as interaction range, strength of electric and magnetic fields and magnetic film and non magnetic spacer thicknesses.Comment: 8 pages, 17 figures, submitted to J. Phys.: Cond Matte

    Distribution of ions near a charged selective surface in critical binary solvents

    Full text link
    Near-critical binary mixtures containing ionic solutes near a charged wall preferentially adsorbing one component of the solvent are studied. Within the Landau-Ginzburg approach extended to include electrostatic interactions and the chemical preference of ions for one component of the solvent, we obtain a simple form for the leading-order correction to the Debye-Huckel theory result for the charge density profile. Our result shows that critical adsorption influences significantly distribution of ions near the wall. This effect may have important implications for the screening of electrostatic interactions between charged surfaces immersed in binary near-critical solvents.Comment: 24 pages, 3 figure

    Unusual transport properties of ferromagnetic Heusler alloy Co2_2TiSn

    Full text link
    We report results of magnetization, zero field resistivity and magnetoresistance measurements in ferromagnetic Heusler alloy Co2_2TiSn. There is a striking change in the character of electron transport as the system undergoes the paramagnetic to ferromagnetic transition. In the paramagnetic state the nature of the electron transport is like that of a semiconductor and this changes abruptly to metallic behaviour at the onset of ferromagnetic ordering. Application of external magnetic field tends to suppress this semiconducting like transport leading to a negative magnetoresistance which reaches a peak in the vicinity of Curie temperature. Comparison is made with the similar unusual behaviour observed in other systems including UNiSn and manganites.Comment: 9 pages of text including 5 figures. Submitted to Physical Review

    Surface critical behavior of random systems at the ordinary transition

    Full text link
    We calculate the surface critical exponents of the ordinary transition occuring in semi-infinite, quenched dilute Ising-like systems. This is done by applying the field theoretic approach directly in d=3 dimensions up to the two-loop approximation, as well as in d=4ϵd=4-\epsilon dimensions. At d=4ϵd=4-\epsilon we extend, up to the next-to-leading order, the previous first-order results of the ϵ\sqrt{\epsilon} expansion by Ohno and Okabe [Phys.Rev.B 46, 5917 (1992)]. In both cases the numerical estimates for surface exponents are computed using Pade approximants extrapolating the perturbation theory expansions. The obtained results indicate that the critical behavior of semi-infinite systems with quenched bulk disorder is characterized by the new set of surface critical exponents.Comment: 11 pages, 11 figure

    Surface critical exponents at a uniaxial Lifshitz point

    Full text link
    Using Monte Carlo techniques, the surface critical behaviour of three-dimensional semi-infinite ANNNI models with different surface orientations with respect to the axis of competing interactions is investigated. Special attention is thereby paid to the surface criticality at the bulk uniaxial Lifshitz point encountered in this model. The presented Monte Carlo results show that the mean-field description of semi-infinite ANNNI models is qualitatively correct. Lifshitz point surface critical exponents at the ordinary transition are found to depend on the surface orientation. At the special transition point, however, no clear dependency of the critical exponents on the surface orientation is revealed. The values of the surface critical exponents presented in this study are the first estimates available beyond mean-field theory.Comment: 10 pages, 7 figures include
    corecore