390 research outputs found

    Spin-Wave Relaxation in a Quantum Hall Ferromagnet

    Full text link
    We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible. We compare this relaxation mechanism with other relaxation channels existing in a quantum Hall ferromagnet.Comment: Submitted to JETP Letter

    Goldstone Mode Relaxation in a Quantum Hall Ferromagnet due to Hyperfine Interaction with Nuclei

    Full text link
    Spin relaxation in quantum Hall ferromagnet regimes is studied. As the initial non-equilibrium state, a coherent deviation of the spin system from the B⃗{\vec B} direction is considered and the breakdown of this Goldstone-mode state due to hyperfine coupling to nuclei is analyzed. The relaxation occurring non-exponentially with time is studied in terms of annihilation processes in the "Goldstone condensate" formed by "zero spin excitons". The relaxation rate is calculated analytically even if the initial deviation is not small. This relaxation channel competes with the relaxation mechanisms due to spin-orbit coupling, and at strong magnetic fields it becomes dominating.Comment: 8 page

    Bound States in a Quantized Hall Ferromagnet

    Full text link
    We report on a study of the quasielectron-quasihole and skyrmion-antiskyrmion bound states in the ν=1\nu=1 quantum Hall regime. The short range attraction potential is assumed to be determined by a point magnetic impurity. The calculations are performed within the strong field approximation when the binding energy and the characteristic electron-electron interaction energy are smaller than the Landau level spacing. The Excitonic Representation technique is used in that case.Comment: 8 page

    The Cyclotron Spin-Flip Mode as the Lowest-Energy Excitation of Unpolarized Integer Quantum Hall States

    Full text link
    The cyclotron spin-flip modes of spin unpolarized integer quantum Hall states (ν=2,4\nu =2,4) have been studied with inelastic light scattering. The energy of these modes is significantly smaller compared to the bare cyclotron gap. Second order exchange corrections are held responsible for a negative energy contribution and render these modes the lowest energy excitations of unpolarized integer quantum Hall states.Comment: Published: Phys. Rev. B 72, 073304 (2005

    Spin relaxation in a two-electron quantum dot

    Full text link
    We discuss the rate of relaxation of the total spin in the two-electron droplet in the vicinity of the magnetic field driven singlet-triplet transition. The total spin relaxation is attributed to spin-orbit and electron-phonon interactions. The relaxation process is found to depend on the spin of ground and excited states. This asymmetry is used to explain puzzles in recent high source-drain transport experiments.Comment: 9 pages in the PDF format, 1 figur

    Impact of system parameter selection on radar sensor performance in automotive applications

    Get PDF
    The paper deals with the investigation of relevant boundary conditions to be considered in order to operate 77/79 GHz narrow and ultra wide band automotive radar sensors in the automotive platform and the automotive environment

    Simplified modeling of EM field coupling to complex cable bundles

    Get PDF
    In this contribution, the procedure "Equivalent Cable Bundle Method" is used for the simplification of large cable bundles, and it is extended to the application on differential signal lines. The main focus is on the reduction of twisted-pair cables. Furthermore, the process presented here allows to take into account cables with wires that are situated quite close to each other. The procedure is based on a new approach to calculate the geometry of the simplified cable and uses the fact that the line parameters do not uniquely correspond to a certain geometry. For this reason, an optimization algorithm is applied
    • …
    corecore