44 research outputs found

    Tensor-scalar gravity and binary-pulsar experiments

    Get PDF
    Some recently discovered nonperturbative strong-field effects in tensor-scalar theories of gravitation are interpreted as a scalar analog of ferromagnetism: "spontaneous scalarization". This phenomenon leads to very significant deviations from general relativity in conditions involving strong gravitational fields, notably binary-pulsar experiments. Contrary to solar-system experiments, these deviations do not necessarily vanish when the weak-field scalar coupling tends to zero. We compute the scalar "form factors" measuring these deviations, and notably a parameter entering the pulsar timing observable gamma through scalar-field-induced variations of the inertia moment of the pulsar. An exploratory investigation of the confrontation between tensor-scalar theories and binary-pulsar experiments shows that nonperturbative scalar field effects are already very tightly constrained by published data on three binary-pulsar systems. We contrast the probing power of pulsar experiments with that of solar-system ones by plotting the regions they exclude in a generic two-dimensional plane of tensor-scalar theories.Comment: 35 pages, REVTeX 3.0, uses epsf.tex to include 9 Postscript figure

    Quantifying On‐Farm Nitrous Oxide Emission Reductions in Food Supply Chains

    Get PDF
    Reducing nitrous oxide (N2O) emissions from agriculture is critical to limiting future global warming. In response, a growing number of food retailers and manufacturers have committed to reducing N2O emissions from their vast networks of farmer suppliers by providing technical assistance and financial incentives. A key challenge for such companies is demonstrating that their efforts are leading to meaningful progress toward their climate mitigation commitments. We show that a simplified version of soil surface nitrogen (N) balance—or partial N balance—the difference between N inputs to and outputs from a farm field (fertilizer N minus crop N), is a robust indicator of direct N2O emissions from fields with maize and other major rainfed temperate‐region crops. Furthermore, we present a generalized environmental model that will allow food‐supply‐chain companies to translate aggregated and anonymized changes in average N balance across their supplying farms into aggregated changes in N2O emissions. This research is an important first step, based on currently available science, in helping companies demonstrate the impact of their sustainability efforts
    corecore