928 research outputs found

    Pair creation of anti-de Sitter black holes on a cosmic string background

    Full text link
    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the strings tension. In an AdS background this is the only study done in the process of production of a pair of correlated black holes with spherical topology. The acceleration AA of the produced black holes is necessarily greater than (|L|/3)^(1/2), where L<0 is the cosmological constant. Only in this case the virtual pair of black holes can overcome the attractive background AdS potential well and become real. The instantons that describe this process are constructed through the analytical continuation of the AdS C-metric. Then, we explicitly compute the pair creation rate of the process, and we verify that (as occurs with pair creation in other backgrounds) the pair production of nonextreme black holes is enhanced relative to the pair creation of extreme black holes by a factor of exp(Area/4), where Area is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when L=0.Comment: 13 pages, 3 figures, ReVTeX

    Strategies to preserve postharvest quality of horticultural crops and superficial scald control: from diphenylamine antioxidant usage to more recent approaches

    Get PDF
    Horticultural crops are vulnerable to several disorders, which affect their physiological and organoleptic quality. For about forty years, the control of physiological disorders (such as superficial scald) in horticultural crops, particularly in fruit, was achieved through the application of the antioxidant diphenylamine (DPA), usually combined with controlled atmosphere (CA) conditions. However, identification of DPA residues and metabolites in treated fruits, associated with thei toxicity, banned the use of this antioxidant in Europe. This triggered the urgent need for novel and, ideally, natural and sustainable alternatives, combined with adequate storage conditions to protect cultivars from harmful agents. This review systematizes the state-of-the-art DPA application on several fresh cultivars, such as apples, pears, and vegetables (potatoes, spinach, etc.), as well as the possible mechanisms of the action and effects of DPA, emphasizing its antioxidant properties. Alternative methods to DPA are also discussed, as well as respective effects and limitations. Recent research on scald development molecular pathways are highlighted to open new non-chemical strategies opportunities. This appraisal shows that most of the current solutions have not lead to satisfactory commercial results; thus, further research aimed to understand the mechanisms underlying postharvest disorders and to design sustainable and safe solutions to improve horticultural products storage is needed.info:eu-repo/semantics/publishedVersio

    Methylation of RNA polymerase II non-consensus Lysine residues marks early transcription in mammalian cells

    Get PDF
    Dynamic post-translational modification of RNA polymerase II (RNAPII) coordinates the co-transcriptional recruitment of enzymatic complexes that regulate chromatin states and processing of nascent RNA. Extensive phosphorylation of serine residues at the largest RNAPII subunit occurs at its structurally-disordered C-terminal domain (CTD), which is composed of multiple heptapeptide repeats with consensus sequence Y1-S2-P3-T4-S5-P6-S7. Serine-5 and Serine-7 phosphorylation mark transcription initiation, whereas Serine-2 phosphorylation coincides with productive elongation. In vertebrates, the CTD has eight non-canonical substitutions of Serine-7 into Lysine-7, which can be acetylated (K7ac). Here, we describe mono- and di-methylation of CTD Lysine-7 residues (K7me1 and K7me2). K7me1 and K7me2 are observed during the earliest transcription stages and precede or accompany Serine-5 and Serine-7 phosphorylation. In contrast, K7ac is associated with RNAPII elongation, Serine-2 phosphorylation and mRNA expression. We identify an unexpected balance between RNAPII K7 methylation and acetylation at gene promoters, which fine-tunes gene expression levels

    Percolation of Color Sources and the determination of the Equation of State of the Quark-Gluon Plasma (QGP) produced in central Au-Au collisions at \sqrt S_{NN}= 200 GeV

    Get PDF
    The Color String Percolation Model (CSPM) is used to determine the equation of state (EOS) of the QGP produced in central Au-Au collisions at sNN\sqrt{s_{NN}} = 200 A GeV using STAR data at RHIC. When the initial density of interacting colored strings exceeds the 2D percolation threshold a cluster is formed, which defines the onset of color deconfinement. These interactions also produce fluctuations in the string tension which transforms the Schwinger particle (gluon) production mechanism into a maximum entropy thermal distribution. The single string tension is determined by identifying the known value of the universal hadron limiting temperature TcT_{c} = 167.7 ±\pm 2.6 MeV with the CSPM percolation temperature at the critical threshold ξc\xi_{c} =1.2. At mid-rapidity the initial Bjorken energy density and the initial temperature determine the number of degrees of freedom consistent with the formation of a \sim 2+1 flavor QGP. An analytic expression for the equation of state, the sound velocity Cs2(ξ)C_{s}^{2}(\xi) is obtained in CSPM. The CSPM Cs2(ξ)C_{s}^{2}(\xi) and the bulk thermodynamic values ε/T4\varepsilon /T^{4} and s/T3s /T^{3} are in excellent agreement in the phase transition region with recent lattice QCD simulations (LQCD) by the HotQCD Collaboration.Comment: 4 pages, 3 figure

    The extremal limits of the C-metric: Nariai, Bertotti-Robinson and anti-Nariai C-metrics

    Full text link
    In two previous papers we have analyzed the C-metric in a background with a cosmological constant, namely the de Sitter (dS) C-metric, and the anti-de Sitter (AdS) C-metric, following the work of Kinnersley and Walker for the flat C-metric. These exact solutions describe a pair of accelerated black holes in the flat or cosmological constant background, with the acceleration A being provided by a strut in-between that pushes away the two black holes. In this paper we analyze the extremal limits of the C-metric in a background with generic cosmological constant. We follow a procedure first introduced by Ginsparg and Perry in which the Nariai solution, a spacetime which is the direct topological product of the 2-dimensional dS and a 2-sphere, is generated from the four-dimensional dS-Schwarzschild solution by taking an appropriate limit, where the black hole event horizon approaches the cosmological horizon. Similarly, one can generate the Bertotti-Robinson metric from the Reissner-Nordstrom metric by taking the limit of the Cauchy horizon going into the event horizon of the black hole, as well as the anti-Nariai by taking an appropriate solution and limit. Using these methods we generate the C-metric counterparts of the Nariai, Bertotti-Robinson and anti-Nariai solutions, among others. One expects that the solutions found in this paper are unstable and decay into a slightly non-extreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation, that accompanies the decay of the dS and AdS spaces

    Magnetic Branes in Gauss-Bonnet Gravity

    Full text link
    We present two new classes of magnetic brane solutions in Einstein-Maxwell-Gauss-Bonnet gravity with a negative cosmological constant. The first class of solutions yields an (n+1)(n+1)-dimensional spacetime with a longitudinal magnetic field generated by a static magnetic brane. We also generalize this solution to the case of spinning magnetic branes with one or more rotation parameters. We find that these solutions have no curvature singularity and no horizons, but have a conic geometry. In these spacetimes, when all the rotation parameters are zero, the electric field vanishes, and therefore the brane has no net electric charge. For the spinning brane, when one or more rotation parameters are non zero, the brane has a net electric charge which is proportional to the magnitude of the rotation parameter. The second class of solutions yields a spacetime with an angular magnetic field. These solutions have no curvature singularity, no horizon, and no conical singularity. Again we find that the net electric charge of the branes in these spacetimes is proportional to the magnitude of the velocity of the brane. Finally, we use the counterterm method in the Gauss-Bonnet gravity and compute the conserved quantities of these spacetimes.Comment: 17 pages, No figure, The version to be published in Phys. Rev.

    Horizonless Rotating Solutions in (n+1)(n+1)-dimensional Einstein-Maxwell Gravity

    Full text link
    We introduce two classes of rotating solutions of Einstein-Maxwell gravity in n+1n+1 dimensions which are asymptotically anti-de Sitter type. They have no curvature singularity and no horizons. The first class of solutions, which has a conic singularity yields a spacetime with a longitudinal magnetic field and kk rotation parameters. We show that when one or more of the rotation parameters are non zero, the spinning brane has a net electric charge that is proportional to the magnitude of the rotation parameters. The second class of solutions yields a spacetime with an angular magnetic field and % \kappa boost parameters. We find that the net electric charge of these traveling branes with one or more nonzero boost parameters is proportional to the magnitude of the velocity of the brane. We also use the counterterm method inspired by AdS/CFT correspondence and calculate the conserved quantities of the solutions. We show that the logarithmic divergencies associated to the Weyl anomalies and matter field are zero, and the rr divergence of the action can be removed by the counterterm method.Comment: 14 pages, references added, Sec. II amended, an appendix added. The version to appear in Phys. Rev.

    Revisiting the Local Scaling Hypothesis in Stably Stratified Atmospheric Boundary Layer Turbulence: an Integration of Field and Laboratory Measurements with Large-eddy Simulations

    Full text link
    The `local scaling' hypothesis, first introduced by Nieuwstadt two decades ago, describes the turbulence structure of stable boundary layers in a very succinct way and is an integral part of numerous local closure-based numerical weather prediction models. However, the validity of this hypothesis under very stable conditions is a subject of on-going debate. In this work, we attempt to address this controversial issue by performing extensive analyses of turbulence data from several field campaigns, wind-tunnel experiments and large-eddy simulations. Wide range of stabilities, diverse field conditions and a comprehensive set of turbulence statistics make this study distinct
    corecore