1,335 research outputs found

    Geomorphology of the urban area of Palermo (Italy)

    Get PDF
    The results of a geomorphological study carried out in the urban area of Palermo are summarized in a thematic map. Field survey, analysis of aerial photographs and topographic maps, consultation of historical documents and maps, stratigraphic and topographic reconstruction from numerous wells and subsoil data, and bibliographic search were performed, in order to display the geomorphological changes produced by man over time in a densely populated area and to define the Anthropocene of the study area. Palermo town rises along large marine terrace surfaces cut by small river valleys and bordered by wide degraded and abandoned coastal cliffs. Over the last 2700 years, this area was affected by remarkable man-made changes to topographic surface and underground, exposing large areas of the city to hydraulic, sinkhole, and landslide risks, and increasing the levels of seismic susceptibility. In light of these results, the produced map is useful for urban planning studies

    Deep transfer learning for machine diagnosis: From sound and music recognition to bearing fault detection

    Get PDF
    Today’s deep learning strategies require ever‐increasing computational efforts and demand for very large amounts of labelled data. Providing such expensive resources for machine diagnosis is highly challenging. Transfer learning recently emerged as a valuable approach to address these issues. Thus, the knowledge learned by deep architectures in different scenarios can be reused for the purpose of machine diagnosis, minimizing data collecting efforts. Existing research provides evidence that networks pre‐trained for image recognition can classify machine vibrations in the time‐frequency domain by means of transfer learning. So far, however, there has been little discussion about the potentials included in networks pre‐trained for sound recognition, which are inherently suited for time‐frequency tasks. This work argues that deep architectures trained for music recognition and sound detection can perform machine diagnosis. The YAMNet convolutional network was designed to serve extremely efficient mobile applications for sound detection, and it was originally trained on millions of data extracted from YouTube clips. That framework is employed to detect bearing faults for the CWRU dataset. It is shown that transferring knowledge from sound and music recognition to bearing fault detection is successful. The maximum accuracy is achieved using a few hundred data for fine‐tuning the fault diagnosis model

    AACVD synthesis of catalytic gold nanoparticle-modified cerium(IV) oxide thin films

    Get PDF
    Co-deposition of Ce(dbm)4 and NH4AuCl4 precursors in acetone at 500 °C via AACVD results in deposition of crystalline CeO2 thin films containing/decorated with metallic gold. These particles are estimated to be ∼ 70 nm in size via optical methods. Preliminary testing of catalytic activity showed the materials were surprisingly catalytically active given the very small amounts of gold present and the large estimated particle size, although the presence of smaller catalytically active particles could not be discounted

    Envelope analysis applied to non-Hertzian contact simulations in damaged roller bearings

    Get PDF
    In the latest years many researcher focused on the possibility to foresee the failure of a mechanical system in the early stages in order to allow quick response times. Monitoring and diagnostics are at the base of those methodologies of predictive maintenance, which represents the standard for companies. Data acquired by monitoring systems are sometimes not sufficient to perform an effective diagnosis and to detect failures. In the present work the possibility of a defining a relation between the response of a system and the dimension of a defect causing the vibration is explored. Through a non-Hertzian contact model a roller bearing is studied and a correlation is sought between the size of the defect and the frequency content of the contact pressure time history. Resorting to a non-Hertzian approach enables the determination with good accuracy of the overpressures due to edge effects caused by the sudden change in curvature in presence of a defect. The estimation of the pressure variation can be used to estimate the amplitude of the harmonic content exciting the bearing during operation. Using algorithms for the signal analysis already assessed in the literature, in particular the envelope method, an in-depth analysis of the harmonic content of the signal to consider is possible. The possibility of building a correlation between the load and the size of the defect which might help to identify the dimension of a damage from the estimated frequency content. It is then possible to identify the presence and nature of the defect, allowing an early diagnosis of the failure

    Health indicators construction for damage level assessment in bearing diagnostics: A proposal of an energetic approach based on envelope analysis

    Get PDF
    Predictive maintenance strategies are established in the industrial context on account of their benefits in terms of costs abatement and machine failures reduction. Among the available techniques, vibration-based condition monitoring (VBCM) has notably been applied in many bearing fault detection problems. The health indicators construction is a central issue for VBCM, since these features provide the necessary information to assess the current machine condition. However, the relation between vibration data and its sources intimately related to bearing damage is not effortlessly definable from a diagnostic perspective. This study discloses a diagnostic investigation performed both on the vibration signal and on the contact pressure signal that is supposed to be one of main forcing terms in the dynamic equilibrium of the damaged bearing. Envelope analysis and spectral kurtosis (SK) are applied to extract and compare diagnostic features from both signals, referring to the Case Western Reserve University (CWRU) case-study. Namely, health indicators are constructed by means of physical considerations based on the effect of faults on the signal power contents. These indicators show to be promising not only for damage detection but, also, for damage severity assessment. Moreover, they provide an invaluable reading key of the link occurring between the contact pressure path and the vibration response

    The spectral element method as an effective tool for solving large scale dynamic soil-structure interaction problems

    Get PDF
    The spectral element method (SEM) is a powerful numerical technique naturally suited for wave propagation and dynamic soil-structure interaction (DSSI) analyses. A class of SEM has been widely used in the seismological field (local or global seismology) thanks to its capability of providing high accuracy and allowing the implementation of optimized parallel algorithms. We illustrate inthis contribution how the SEM can be effectively used also for the numerical analysis of DSSI problems, with reference to the 3D seismic response of a railway viaduct in Italy. This numerical analysis includes the combined effect of: a) strong lateral variations of soil properties; b) topographic amplification; c) DSSI; d) spatial variation of earthquake ground motion in the structural response. Some hints on the work in progress to effectively handle nonlinear problems with SEM are also given

    Do not disturb the family: roles of colony size and human disturbance in the genetic structure of lesser kestrel

    Get PDF
    Dispersal and philopatry are fundamental processes influencing the genetic structure and persistence of populations and might be affected by isolation and habitat perturbation. Habitat degradation induced by human activities could have detrimental consequences on genetic structure of populations. Therefore, it is crucial to understand the role of human impacts in promoting or disrupting genetic structure. Here, we conducted a genetic analysis using 12 polymorphic microsatellite markers of 70 lesser kestrels (Falco naumanni) from 10 breeding colonies of two subpopulations in Sicily (southern Italy). Genetic differentiation between the two subpopulations was negligible, and linear distances played no role in the level of genetic relatedness recorded in the two sites. Linear distances between nests also resulted in no effects on the relatedness recorded within and between colonies in the largest subpopulation. Clusters of more versus less related individuals resulted when the two-dimensional positions of colonies (i.e., latitude and longitude) were tested as predictors of genetic proximity instead of linear distances. Specifically, analyses of colony features showed colony size and human disturbance as factors negatively affecting the relatedness among chicks from different nests. Regardless of colony size, less-related individuals were born in colonies located in the core of the agricultural plain, where we quantified a higher level of human disturbance. In contrast, more related individuals were in colonies that existed in the marginal, less disturbed, agricultural area. Given the high philopatry of this species, our results are consistent with disruption of colony fidelity related to intensification of agricultural practices. We discuss the possible implications of long-term effects of genetic variability in small and disturbed colonies on fitness and population viability

    Quaternary marine and continental unconformity-bounded stratigraphic units of the NW Sicily coastal belt

    Get PDF
    In the coastal sector of NW Sicily, the regional correlation of relevant unconformities recognised within the Quaternary sedimentary successions allowed the mapping of seven unconformitybounded stratigraphic units (UBSUs). The regional unconformities are marine or subaerial erosional surfaces, as well as non-depositional surfaces, locally marked by paleosoils. The erosional surfaces were produced from marine abrasion, surface water overland/ concentrated flow, river erosion, karst solution, mass movement, or wind erosion. The main lithofacies of the Quaternary UBSUs consist of: (a) marine and coastal bioclastic calcarenites, (b) aeolian sandstones, (c) river deposits, (d) colluvial deposits, (e) talus slope deposits, (f) landslide deposits, and (g) chemical carbonates (travertines and speleothems). Quaternary environmental changes, due to tectonics, climate, and sea-level oscillations, are the causes that favoured the development of erosion/deposition processes responsible for the genesis of unconformities and deposits. As a result, through the UBSU map of the NW Sicilian coastal belt, it is possible to: (i) recognise stratigraphic units controlled by tectonic, climatic, and environmental processes (and their interplay) and (ii) detect Quaternary sedimentary evolution

    Anthropogenic sinkholes in the Marsala area (western Sicily) linked to underground quarries

    Get PDF
    Marsala territory (western Sicily) is characterized by the presence of a Lower Pleistocene (Calabrian) calcarenite succession (Marsala Calcarenite Fm). It can be divided into three lithofacies that show the regressive evolution of the depositional system: a) coarse to fine yellow bio- and lithoclastic calcarenites, b) sands, and c) gray sandy clays. At least 80 m-thick, this succession gently dips (5-10) towards the south and the south-west. At some locations the Marsala Calcarenite is covered by Middle and Upper Pleistocene marine terraced deposits. Since the Roman period, due to the great abundance of calcarenite rocks, and to the facility of extraction, the Marsala area has been characterized by a high number of quarries for the extraction of this building materials. Many of them were excavated underground, at depth varying from a few meters to about 25 m, and are arranged in one or two levels, following the galleries and pillars excavation technique. With time, the underground quarries have been progressively abandoned for the decay of the physical and mechanical properties of the calcarenite rock mass, the interaction with the groundwater, the high costs of extraction, and the dangers and difficulties encountered in working underground. Since the 1960’s the quarries have been affected by instability processes, visible through collapses and deformations of vaults and pillars. These phenomena often propagate upward reaching the topographic surface and forming sinkholes which affect and severely damage the built-up area. In particular, two case studies of sinkholes related to different underground quarries will be analyzed in this paper. The aim is to provide a description of the most significant processes and factors responsible of the instability processes based on field surveys, as well as to understand the generation mechanisms of these anthropogenic sinkholes by means of numerical modeling, based on rock laboratory testing data, that represents in these cases a remarkable tool for the investigation of the cause-effect relationships, as already performed in other areas of Italy

    Aerosol-assisted CVD synthesis, characterisation and gas-sensing application of gold-functionalised tungsten oxide

    Get PDF
    Tungsten oxide nanoneedles (NNs) functionalised with gold nanoparticles (NPs) have been integrated with alumina gas-sensor platforms using a simple and effective co-deposition method via aerosol-assisted chemical vapour deposition (AACVD) utilising a novel gold precursor, (NH4)AuCl4. The gas-sensing results show that gold NP functionalisation of tungsten oxide NNs improves the sensitivity of response to ethanol, with sensitivity increasing and response time decreasing with increasing amount of gold
    corecore